
Partial Words for DNA Coding

Peter Leupold?

Research Group on Mathematical Linguistics
Rovira i Virgili University

Pça. Imperial Tàrraco 1, 43005 Tarragona, Catalunya, Spain
eMail: klauspeter.leupold@estudiants.urv.es

Abstract. A very basic problem in all DNA computations is finding a
good encoding. Apart from the fact that they must provide a solution, the
strands involved should not exhibit any undesired behaviour, especially they
should not form secondary structures. Various combinatorial properties like
repetition-freeness and involution-freeness have been proposed to exclude
such misbehaviour. Another option, which has been considered, is requiring
a big Hamming distance between the codewords.
We propose to consider partial words for the solution of the coding problem.
They, in some sense, already include the Hamming distance in the definition
of compatibility and are investigated for many combinatorial properties.
Thus, they can be used to guarantee a desired distance and simultaneously
other properties. As the investigations on partial words are attracting more
and more attention, they might be able to provide an ever-growing toolbox
for finding good DNA encodings.

1 Introduction

Partial words were introduced by Berstel and Boasson in 1998 [3]. One of their main
motivations came from the behaviour of DNA strands. Two strands complementing
each other very closely, but having a few mismatches can still align with each other.
In such a double strand of DNA with a few mismatches, one cannot tell which of
the two non-matching bases is the right or original one. Thus one might consider
the respective position as one without information, a whole, and then see what can
still be said about the resulting word.

On the other hand, DNA or RNA strands are the basic building blocks and the
carriers of information in all DNA computations. There, a major issue is finding
the right words to encode the problem under consideration. Computations like the
famous, seminal experiment by Adleman depend on the usage of sequences, which
will recombine exactly in the ways intended in the design.

Of course, the central problem is finding a suitable set of linear sequences, whose
recombinations will constitute the computation. However, in addition the designer
faces further problems due to the fact that in reality nucleic acid strands are not
linear but three-dimensional objects. Thus the selected strands might form three-
dimensional secondary structures like loops and hairpins. This should be avoided
by all means, i.e. no parts of the strand should align with other parts of the same
strand to form structures like the ones depicted in Figure 1, which we have taken
from an article by Adronescu et al. [1]. Such secondary structures obviously hinder
further combinability, readability etc., and thus can render useless a computation
designed very well for one-dimensional strings, but without consideration of the
actual behaviour of longer strands of nucleic acids in the three-dimensional real
world.
? This work was done, while the author was funded by the Spanish Ministry of Cul-
ture, Education and Sport under the Programa Nacional de Formación de Profesorado
Universitario.

Bulge

Hairpin Loop

External Base

Fig. 1. Various possible secondary structures of an RNA strand; the line indicates the
backbone, the dotted ones paired bases.

Adronescu et al. also mention a rather simple model trying to predict such
structures, the no repeated k-strings model [1]. There, a sequence is supposed to
have non-empty secondary structure, if there is a repetition without overlap of a
factor of length k in the string. It should be emphasized that this need not be a
direct repetition, usually termed square in combinatorics on words – in this case an
arbitrarily long sequence can separate the two repetitions; it should be added that
would one really be looking for reverse complement strings instead of repetitions,
which could be done with essentially the same algorithms.

In a different approach Deaton et al. have considered the Hamming distance
between the strands of a coding as an approximate measure for the reliability of a
computation [9]. The farther apart the code words are, the less probable undesired
bindings are.

Partial words seem a good tool to combine properties like these two: if we replace
equality of words by compatibility, we in some sense get the Hamming distance for
free. If then we define a property like repetition-freeness also for partial words, we
can guarantee both properties in a unified way.

We will proceed to illustrate this considering another property, namely involution-
freeness, which was introduced by Hussini et al. [13] and further developed with
numerous variants in subsequent work [11, 12, 14]. Before this, we mention yet an-
other motivation to use partial words in the context of DNA computation: if such
a computation lasts for a longer time and involves some recombinations and espe-
cially copying of strands, errors are bound to be introduced in some of the strands;
for example, copying processes never work with absolute perfection. If one wants
to choose a set of DNA words fulfilling a property, even after some bases may have
been changed, it is an appropriate approach to check the following: does the desired
property still hold, if the originally chosen language of code words and their possible
catenations is punctured up to a certain degree with holes like in a partial word.
Such a code language would be more robust to errors and external influence and
would thus promise more reliable computations. Also the production of not exactly
complementary but very similar sequences, which still might align to each other,
would be outruled.

2 Partial Words

The main motivation for the introduction of partial words mentioned by Berstel and
Boasson [3] came from molecular biology of nucleic acids. There, among other things,
one tries to determine properties of the DNA or RNA sequences encountered in
nature. These are usually seen as strings over the alphabet {A, T,C,G}, respectively
{A,U,C,G} of four bases. In nature they mostly occur paired with their Watson-

Crick complements; all these concepts belong more to the realm of biology and will
not be explained in any depth here.

But supposing only perfect pairings of bases is supposing an ideal world. As long
as the number of mismatches is not very high, similar strands will still align due to
the affinity of their matching parts.

If one then encounters a pair of strands as depicted in Figure 2, there is in
general no telling, which one of the mismatched bases is the correct or original one.
However, one still wants to investigate the properties of such a sequence and state

Fig. 2. Part of an RNA sequence with two mismatches.

them as concisely as possible. To this end, it seems a plausible choice to regard
the positions in question as unknown, or holes, and to see what then still can be
said about such a sequence. In the given example we would consider (for the upper
strand) a string composed of the parts . . . AG, CAAUGU , and ACAGUC . . . in
this order with one hole inbetween each of the parts.

Thus, intuitively, a partial word is very much like a conventional word, only
at some positions we do not know which letter it has. Looking at a word as a
total function from {0, . . . , |w| − 1} to Σ, we then except these unknown positions
from the mapping’s domain and define a partial word w as a partial function from
{0, . . . , |w|−1} to Σ. The positions, where w[n] is not defined for n < |w| are called
the word’s holes. The numbers in {0, . . . , |w| − 1} \D(w) are the set of holes of w
and are written Hole(w). Here D(w) denotes the domain of w.

For a partial word w we define its companion as the total word w♦ over the
extended alphabet Σ ∪ {♦} where

w♦[i] :=

{

w[i] if i ∈ D(w)
♦ if i 6∈ D(w) ∧ 0 ≤ i < |w|

When it is more convenient, we will also refer to the companion as a partial word
to simplify the syntax of our sentences. Thus we will say for example “the partial
word ♦a♦b” instead of “the partial word with companion ♦a♦b”.

For two partial words u and v of equal length, we say that u is contained in v,
if D(u) ⊂ D(v) and i ∈ D(u) → u[i] = v[i]; this is written u ⊂ v, a rather natural
notation, if we adopt the view of a function f as a set of ordered pairs [n, f(n)]. If
there exists a partial word w such that for two other partial words u and v we have
u ⊂ w and v ⊂ w, then u and v are called compatible, written u ↑ v. For two such
words, u∨v is the smallest word containing both u and v; smallest here means that
its domain is D(u ∨ v) = D(u) ∪D(v), its values are defined in the obvious way.

At times it will be interesting to in some sense measure to what degree a partial
word is riddled with holes. For example a nucleic acid sequence would certainly
not align with its complement any more, if more than half of its bases had been
changed. To formally denote the degree to which a partial word u is undefined we

will use the puncturedness coefficient defined as ϑ(u) := Hole(u)
|u| .

A final notion we will need concerns the intersection of two sets of partial words.
For it to contain also words not in either language but compatible to at least one

word from each language, we define a modified intersection:

K u L := {w : ∃u ∈ K,∃v ∈ L[w = u ∨ v]}

An important question is how to obtain such languages of partial words to start
with. Because, in this context, holes are considered as some type of defect, which
might occur just about anywhere, we choose the following approach: we start out
from a language L of total words.

Definition 2.1 For some puncturedness coefficient r with 0 < r ≤ 1 the language
Lr−♦, called L’s r-puncturing, is the one that contains all words of L and all the
partial words one can obtain from these obeyeing the bound imposed by the coefficient
r.

As already mentioned, the Hamming distance between code words has been
considered as a measure for the quality of a code [9]. To make evident the close
connection between compatibility and the Hamming distance we close this section
by stating a rather obvious equivalence.

Proposition 2.1 Let k,m be two natural numbers with m > 2k. Two words u, v ∈
(Σm)k−♦ are compatible, if and only if their Hamming distance is less than or equal
2k.

Notions from classical Formal Language Theory are not explained here; we only
mention that Σ shall always denote the alphabet under consideration and that Σ∗

is the set of all words over this alphabet; finally Σ+ := Σ∗ \ {λ}.

3 Involutions and DNA

We now introduce a special class of mappings, so-called involutions. These enjoy
some special interest in the context of DNA computing, because the Watson-Crick
complementarity corresponds to a specific involution to be introduced further down.

In general, an involution is a mapping θ such that θ2 is the identity mapping.
A mapping such that always µ(uv) = µ(u)µ(v) is a morphism; an involution also
fulfilling this property will be called a morphic involution.

We now recall a few special involutions acting over the DNA-alphabet ∆ =
{A,C,G, T}, which were introduced, for example, by Hussini et al [11]; their spe-
cific importance in the context of DNA is that a strand and its image under τ

align. Thus, strands which are not supposed to align with themselves to form sec-
ondary structures should not contain at the same time some factor and its image
as explained with more detail in the cited source.

The complement involution γ is defined by γ(A) := T , γ(T) := A, γ(G) := C,
and γ(C) := G; additionaly we define γ(♦) := ♦ to extend the mapping from total
to partial words. A second involution is the mirror involution µ mapping every
word into its mirror image; i.e. it reverses the word’s order. Their combination µγ

is also an involution and will be called the DNA involution τ . Thus, for example
τ(GTAT) = ATAC.

4 Involution Compliance and Freedom

For various reasons it seems reasonable to consider in this context only punctured-
ness bounds relative to the words’ length. First, whether two strands align or not,
depends not on the absloute number of mismatches, but more on their frequency.
While two strands of length eight will almost certainly not align, if there are four

mismatches, the same number is negligible for strands of lengths greater than one
hundred.

Secondly, computation means that something is happening; so computing with
DNA molecules means that they are changed, at the very least rearranged in some
way. Often enough this involves catenation; especially in the matters treated here,
catenation plays a central role. And while relative bounds are preserved under cate-
nation, absolute ones are not, because the number of holes is simply summed up
for two catenated words.

Proposition 4.1 For a rational number r with 0 < r < 1 the inclusion (Lr−♦)∗ ⊆
(L∗)r−♦ holds.

It is easily seen that the two sets are in general not equal. Consider a non-empty
language L with only words shorter than 1

r
; its r-puncturing is just L itself, it does

not contain any words with holes. Thus also the Kleene iteration is a total language.
The r-puncturing of L∗, however, contains words of arbitrary length and therefore
also words with holes.

To make notation a little easier and more readable we make the following con-
vention: when the puncturing symbol ♦ will be used without giving either a constant
or a relative bound in the form r−♦; this shall mean that all occurences within a
definition, theorem, etc. have the same relative bound. In general, the respective
statements will not be true or make sense without this unstated assumption.

Definition 4.1 A language of partial words L is θ-compliant for a morphic involution
θ, if for words u, v, w,w′ ∈ Σ∗♦ we have that w, uθ(w′)v ∈ L♦ and w ↑ θ(w′) imply
uv = λ; if also (L)♦ u θ(L)♦ = ∅, then L is strictly θ-compliant.

A rather easy to see property of compliance is the following.

Proposition 4.2 For every θ-compliant language L♦, also θ(L♦) is θ-compliant.

Further, we can see quickly a necessary and sufficient condition for the strictness
of compliance.

Proposition 4.3 A θ-compliant language L♦ is strictly θ-compliant, if and only if
(L∗)♦ u (θ(L)∗)♦ = {λ}.

Proof. The empty word is in any iteration of a language, and thus always λ ∈
(L♦)∗ u (θ(L)♦)∗. Now suppose there is another word in this set for some strictly
θ-compliant language L. This means there are words u1, . . . , un and v1, . . . , vm all
from L such that

(u1 · u2 . . . un)
♦ ↑ θ(v1 · v2 . . . vm)♦.

If |u1| < |θ(v1)| or |u1| > |θ(v1)| this leads to a contradiction to L’s θ-compliance
or to θ(L)’s θ-compliance, which by Proposition 4.2 is equivalent. For |u1| = |θ(v1)|
we must have u1 ↑ θ(v1); so only in this case we need the strict θ-compliance of L
to reach a contradiction.

The other direction of the implication is rather obvious. ut

After compliance, freeness is a second interesting property related to involutions.

Definition 4.2 A language L is θ-free, if (L2)♦ u (Σ+θ(L)Σ+)♦ = ∅; if also (L)♦ u
θ(L)♦ = ∅, then L is strictly θ-free; it suffices, if L \ {λ} is strictly θ-free.

It is quite clear that the notions just defined carry over from punctured languages
to total ones, in exactly the sense of the original definitions [11]. We state this
explicitly only in one exemplary case.

Proposition 4.4 If any puncturing of a language L is θ-free, then L itself is θ-free.

Proof. For languages of only total words, u becomes simply conventional set inter-
section; thus the two definitions of θ-freeness are equivalent, and consequently hold
for the same class of languages, ut

As is to be expected, the contrary is not true. To show this, we investigate
an example provided by Hussini et al. Here the DNA-involution τ and the DNA-
alphabet ∆ are used as introduced in Section 3.

Example 4.1 ACC∆2 is τ -free [11]. With a puncturing factor of 1
10 this is not true

any more. Consider the two words

w1 = ACCGGACCTG

w2 = ACCGGTCCTG,

where w1 is from ACC∆2ACC∆2, and τ(w2) is from the set ∆+(∆2GGT)∆+,
which is equal to ∆+θ(ACC∆2)∆+. They are identical except for the sixth posi-
tion. As they have length ten, one hole is allowed, and thus the 1

10 -puncturing of
ACC∆2 is not τ -free, because (ACC∆2ACC∆2)♦ u (∆+(∆2GGT)∆+)♦ contains,
for example, ACCGG♦CCTG, because this word is contained in both languages.

So we see that in general things must be reinvestigated. However, we have chosen
our definitions in a way that leaves most results for total languages valid with only
the reformulations necessary by the slight differences in definition. We illustrate this
with the first result from Hussini et al.

Proposition 4.5 For a language L and a morphic involution θ the following hold true:
(i) If L♦ is θ-free, then both L♦ and θ(L♦) are θ-compliant.
(ii) If L♦ is strictly θ-free, then (L2)♦ u (Σ∗θ(L)Σ∗)♦ = ∅

Proof. We give only the proof for (i); it is very analogous to the proof of the original
lemma just as the proof for part (ii). So suppose that L is a language such that
L♦ is θ-free but at the same time not θ-compliant. The latter implies that either
Σ+θ(L♦)Σ∗ uL♦ 6= ∅ or Σ∗θ(L♦)Σ+ uL♦ 6= ∅. Catenating L♦ on the right side in
the second case, we obtain L♦Σ∗L♦Σ+ u L♦L♦ 6= ∅. With Proposition 4.1 we see
that then also (LΣ∗LΣ+)♦u(LL)♦ 6= ∅; this contradicts θ-freeness. In the first case
an analogous contradiction is reached. Finally, for θ(L♦) the inclusion now follows
with Proposition 4.2. ut

As already mentioned, there is some special interest in the behaviour of certain
properties with respect to catenation. For the case of compliance, we can state a
positive result in this respect.

Proposition 4.6 If two languages L♦1 and L♦2 are both θ-compliant a morphic invo-
lution θ, then also their catenation L1 · L2 is θ-compliant.

Proof. We assume that there exist two θ-compliant languages L1 and L2, whose
catenation is not θ-compliant. This means there are partial words u, v, w,w′ such
that w, uθ(w′)v ∈ L♦1 · L

♦
2 and w ↑ θ(w′). Let w be composed from w1 ∈ L♦1 and

w2 ∈ L♦2 , and uθ(w′)v from z1 ∈ L♦1 and z2 ∈ L♦2 . The border between z1 and z2

must be inside the factor θ(w′); otherwise we obtain an immediate contradiction to
the θ-compliance of either L♦1 or L♦2 looking at w1 respectively w2.

So w′ has a factorization w′
1w

′
2 such that uθ(w1) ∈ L♦1 and θ(w2)v ∈ L♦2 . Now if

|w1| ≤ |w
′
1|, then w1 is compatible to a prefix of θ(w′

1) in the word uθ(w′
1), which is

in contradiction to the θ-compliance of L♦1 , because uθ(w1) ∈ L♦1 . If, on the other
hand, |w1| > |w′

1|, then |w2| ≤ |w
′
2|; we obtain an analogous contradiction to the

θ-compliance of L♦2 . ut

5 Constant Length Codings

Now we will restrict our attention to a class of languages, which seems of special
interest in the context of DNA computations. Many times all the original strands
employed at the beginning of an experiment have the same length. Among other
advantages this allows, for example, telling how far the experiment has proceeded in
a simple way: the length of the present strands corresponds directly to the number
of catenations, which created them. And determining strand length via gel elec-
trophoresis is a very reliable standard procedure.

Thus it seems reasonable to consider languages all of whose words have equal
length. This property allows the statement of some results, which are not true in
general. We note further that the DNA involution τ as well as its components µ and
γ all are length-preserving (this means the length of original and image is always
the same); therefore this is a sensible restriction to put on the involutions under
consideration.

First off, we note that strictness loses its meaning for involution compliance.

Proposition 5.1 A language L ⊂ Σn♦ is θ-compliant for a length-preserving involu-
tion θ, if and only if it is strictly θ-compliant.

Proof. Immediate from the definition: For non-θ-compliance uθ(w′)v (variable names
referring to Definition 4.1) must have the same length as w. Because always |w| =
|w′| = |θ(w′)| for w,w′ ∈ L, uv is empty in any counterexample to θ-compliance. ut

For involution-freeness, the analogous statement is not true as shown by the follow-
ing example.

Example 5.1 The set {TGGT,ATAC} is strictly τ -free. If we add the word ACCA =
τ(TGGT), the resulting set is still τ -free, the strictness, however, is lost.

Proposition 5.2 A constant-length language L♦ is strictly θ-free for a length-preserving
involution θ, if and only if it is θ-free and θ-compliant.

Proof. From strict θ-freeness, θ-freeness follows by definition; θ-compliance follows
by Proposition 4.5.

The inverse inclusion follows immediately from Proposition 5.1 and the fact that
the strictness condition is the same for both freeness and compliance. ut

Now we provide a sufficient condition for a constant-length language to be θ-free,
and also for strict θ-freeness. Here pref(L) denotes the set of all proper prefixes of
words in L and suff(L) denotes the set of all proper suffixes including the empty
word. For one word the sets of prefixes and suffixes are both finite. Therefore the
conditions provided can be checked very easily for any finite language.

However, here we need to give the puncturedness bounds explicitely, because
they are not uniform for all languages involved – there is even a mixture of relative
and absolute bounds. The proof will make clear, why this is necessary.

Proposition 5.3 For L ⊂ Σn, the language Lr−♦ is θ-free, if and only if
(pref(L)suff(L))k−♦ u Lr−♦ = ∅ for k := b2 · r · nc.

Proof. If Lr−♦ is not θ-free, then there exist total words u, v, w ∈ L, such that a
word from θ(wr−♦) is compatible to a subword of one from (uv)r−♦. This subword
is neither entirely from u2r−♦ nor entirely from v2r−♦ due to the definition of θ-
freeness. Further, because all three words have equal length the subword touches
both factors.

Since this subword is shorter than uv itself, the local puncturedness coefficient
might be higher than the one for the entire word. The maximum number of holes
in this word is the following: the length of uv is 2n, thus with a puncturedness
coefficient of r there can be at most b2 · r · nc holes in the entire word from (uv)r−♦

– in the extreme case all of them can be in the subword considered above. Thus
the set (pref(L)suff(L))k−♦uLr−♦ is non-empty. After these considerations also the
inverse inlcusion follows easily. ut

By extending the prefix and suffix sets by the original words themselves, we
immediately obtain an analogous characterization of strictly θ-free languages.

Corollary 5.3.a For L ⊂ Σn, the language Lr−♦ is strictly θ-free, if and only if
((L ∪ pref(L))2r−♦(L ∪ suff(L))2r−♦) u Lr−♦ = ∅.

6 Outlook

What was presented here is only one example for possible usage of partial words
in the context of biological computation, or more general, in dealing with DNA
sequences with certain desired or undesired properties. In some contexts also a
variation of partial words might be useful.

As suggested by both Gh. Păun and G. Lischke, regarding a base pair like A−G

as a hole is to some extent giving away some more information than necessary.
Although theoretically possible, it is in practice improbable that both bases have
been produced by an error. So instead of regarding the position as a complete
unknown, one might attribute to it a type like {A−T,C−G}, supposing that only
the A or only the G is wrong. Considering only one strand we would use {A,C};
either way, this should then be treated as a letter compatible to all its elements,
but not to the other letters.

For the DNA alphabet ∆, the version extended in this sense would be

{A,C,G, T, {A,C}, {A,G}, {T,C}, {T,G}}.

The other possible binary combinations like {A, T} are, of course well-matched pairs
and do not appear here explicitely, but are already represented by the single letters.
To our knowledge this type of partiality has not been investigated yet.

We have stated before that using partial words in the original form for the
encoding of a DNA computation is very related to the use of Hamming distances
between the code words. Already now combinatorial investigations on partial words
offer quite a number of tools concerning periodicity [7],[17], primitivity [5], codes
[6],[15] etc. Thus, and as the combinatorial theory around partial words is growing,
their use might have the advantage over the plain Hamming distance that many
properties have already been investigated and may provide ways to guarantee some
desired properties. Of course, taking into account the pecularities of DNA, also
some tailor-made restrictions of partial words might be defined and investigated for
special purposes.

Acknoledgement

The author is thankful to Max Garzon for pointing him to the coding problem.
Further thanks are due to an anonymous referee for close reading of and detailed
comments about the manuscript.

References

1. M. Andronescu, D. Dees, L. Slaybaugh, Y. Zhao, A.E. Condon, B. Cohen,
and S. Skiena: Algorithms for Testing That Sets of DNA Words Concatenate without
Secondary Structure. In: [10], pp. 182–195.

2. W. Bauer, H. Ehrig, J. Karhumäki and A. Salomaa (eds.): Formal and Natural
Computing. Lecture Notes in Computer Science 2300, Springer-Verlag, Berlin, 2002.

3. J. Berstel and L. Boasson: Partial Words and a Theorem of Fine and Wilf. In:
Theoretical Computer Science, Vol. 218, 1999, pp. 135–141.

4. J. Berstel and D. Perrin: Theory of Codes. Academic Press, 1985.
5. F. Blanchet-Sadri: Primitive Partial Words. Preprint 2003.
6. F. Blanchet-Sadri: Codes, Orderings, and Partial Words. Preprint 2003.
7. F. Blanchet-Sadri and A. Hegstrom: Partial Words and a Theorem of Fine and
Wilf Revisited. In: Theoretical Computer Science, Vol. 270, No. 1/2, 2002, pp. 401–
419.

8. J. Chen and J.H. Reif (Eds.): DNA Computing, 9th International Workshop on
DNA Based Computers. Lecture Notes in Computer Science 2943, Springer-Verlag,
Berlin, 2004.

9. R. Deaton, M. Garzon, R.C. Murphy, J.A. Rose, D.R. Franceschetti and
S.E. Stevens Jr.: On the Reliability and Efficiency of a DNA-based Computation.
In: Physical Review Letters 80:2, 1998, pp. 417–420.

10. M. Hagiya and A. Ohuchi (eds.): DNA Computing — 8th Int. Workshop on DNA-

Based Computers. Lecture Notes in Computer Science 2568, Springer-Verlag, Berlin,
2003.

11. S. Hussini, L. Kari and S. Konstantinidis: Coding Properties of DNA Languages.
In: Theoretical Computer Science, Vol. 290, 2003, pp. 1557–1579.

12. N. Jonoska and K. Mahalingam: Languages of DNA Based Code Words. In: [8],
pp. 61-73.

13. L. Kari, R. Kitto and G. Thierrin: Codes, Involutions and DNA Encodings. In:
[2].

14. L. Kari, S. Konstantinidis, E. Losseva and G. Wozniak: Sticky-free and
Overhang-free DNA Languages. In: Acta Informatica 40(2), 2003, pp. 119-157.

15. P. Leupold: Languages of Partial Words. Submitted.
16. G. Rozenberg and A. Salomaa (eds.): Handbook of Formal Languages. Springer-

Verlag, Berlin, 1997.
17. A.M. Shur and Y.V. Gamzova: Periods’ Interaction Property for Partial Words. In:

Preproceedings of Words’03, TUCS General Publications, Turku, 2003.
18. H.J. Shyr: Free Monoids and Languages. Hon Min Book Company, Taichung, 1991.

