
Theoretical Computer Science 321 (2004) 233–248
www.elsevier.com/locate/tcs

Evolution and observation—a non-standard way
to generate formal languages�

Matteo Cavaliere, Peter Leupold∗

Research Group in Mathematical Linguistics, Rovira i Virgili University, Pc�a. Imperial T�arraco 1,
Tarragona 43005, Spain

Received 9 September 2003; received in revised form 1 March 2004; accepted 11 March 2004

Abstract

In biology and chemistry a standard proceeding is to conduct an experiment, observe its
progress, and then take the result of this observation as the 1nal output. Inspired by this, we
have introduced P/O systems (A. Alhazov, C. Mart56n-Vide, Gh. P9aun, Pre-Proc. of the Workshop
on Membrane Computing 2003, Tarrragona, Spain; http://pizarro.<l.urv.es/continguts/linguistica/
proyecto/reports/wmc03.html), where languages are generated by multiset automata that observe
the evolution of membrane systems.

Now we apply this approach also to more classical devices of formal language theory. Namely,
we use 1nite automata observing the derivations of grammars or of Lindenmayer systems.
We de1ne several modes of operation for grammar/observer systems. In two of these modes
a context-free grammar (or even a locally commutative context-free grammar) with a 1nite au-
tomaton as observer su>ces to generate any recursively enumerable language. In a third case,
we obtain a class of languages between the context-free and context-sensitive ones.
c© 2004 Elsevier B.V. All rights reserved.

Keywords: Formal languages; Evolution; Observation

1. Introduction: when evolution is computation

We introduce and study a new way of looking at the concept of language
generation diAerent from the one in classical formal language theory. The so-called

� This work was done, while both authors were funded by the Spanish Ministry of Culture, Education and
Sport under the Programa Nacional de Formaci5on de Profesorado Universitario (FPU).

∗ Corresponding author.
E-mail addresses: mc1.doc@estudiants.urv.es (M. Cavaliere), klauspeter.leupold@estudiants.urv.es

(P. Leupold).

0304-3975/$ - see front matter c© 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2004.03.036

http://pizarro.fll.urv.es/continguts/linguistica/proyecto/reports/wmc03.html
http://pizarro.fll.urv.es/continguts/linguistica/proyecto/reports/wmc03.html
mailto:mc1.doc@estudiants.urv.es
mailto:klauspeter.leupold@estudiants.urv.es

234 M. Cavaliere, P. Leupold / Theoretical Computer Science 321 (2004) 233–248

Fig. 1. The system=observer architecture.

grammar=observer (G=O) system that we consider in more detail is a particular case
of a more general computing framework, the system=observer architecture. In earlier
work [1] the authors have already joined together the concept of “behaviour” of a
biological system (in the form of a membrane system) and the concept of “observer”
to obtain a model of computation.
There it was shown how a computing device can be constructed using two less

potent systems: the 1rst one, which is a mathematical model of a biological system,
simply “lives” (evolves), passing from one con1guration to the next, producing in this
way a “behaviour”; the second system, called “observer”, is placed outside and watches
the biological system. Following a set of rules the observer translates the behaviour
of the underlying system into a “more readable” output: it associates a label to each
con1guration of the bio system and writes these labels according to their temporal
order onto an output tape.
In this way the pair composed by the biological system and the observer can be con-

sidered a computing device, as described in Fig. 1, which also outlines the framework
in the more general case. In this model the computation is divided between the bio-
logical system and the observer that is able to watch and to “interpret” the behaviour
of the biological system. In this combination already rather simple membrane systems
with only non-cooperating rules observed by multiset 1nite automata have been shown
to su>ce to obtain computational universality [1].
The general idea outlined above recalls what was already discussed by Rozenberg

and Salomaa [6], who remarked that the result of a computation is already present
in nature—we only need to look (in an appropriate way) at it. While in their case
the observation is made applying a gsm machine to the language obtained using the
(biologically inspired) twin-shu3e operation, in our framework the observer is not

M. Cavaliere, P. Leupold / Theoretical Computer Science 321 (2004) 233–248 235

applied to the 1nal result, but rather to the entire evolution of the system. This means
as many applications as there are evolution steps.
Here, instead of considering biological systems, we investigate in the same way a

more general system=observer architecture where the bio system is substituted by any
system that, according to some speci1c rules, is able to move from one con1guration to
the next, producing in this way a behaviour; the observer is any recognizing machine
that translates such a behaviour into a readable output.
We apply this general architecture in the 1eld of Formal Language Theory, intro-

ducing and studying the class of G=O systems, where a grammar plays the role of the
system and an automaton—be it a 1nite automaton or even a Turing machine—plays
the role of the observer. A useful feature is to let the observer output a special label,
if an undesired con1guration=sentential form is observed. Any string containing it is
then not considered as a valid result. This quite simple approach turns out to be very
powerful.
We de1ne several modes of generating languages for G=O systems and investigate

more closely three of them. In the 1rst mode G=O systems constituted by a context-free
grammar and by a 1nite state automaton generate a family of languages between the
context-free and context-sensitive ones. In the other two cases the same combination is
even equivalent to a Turing machine. In one case this result can be further strengthened
to using only a commutative context-free grammar instead of a conventional one. A
similar result for E0L systems then follows directly from this.

2. Preliminaries

We now proceed to 1rst recall and de1ne the components that will make up the
G=O systems used. Then we provide the formal de1nition of these systems and the
languages they generate.

2.1. Formal language theory

In general, for all notions from general formal language theory we refer to the
respective chapters of the Handbook of Formal Languages [7]. Only in a telegraphic
manner we 1x the notations we will use here. A generative grammar is a quadruple
G=(N; T; S; P), where N is the alphabet of non-terminals, T is the terminal alphabet
disjoint from N , S ∈N is the start symbol and P is the set of productions. A derivation
step of G leading from a sentential form w1 to another one w2 is denoted by w1 ⇒G w2

in the usual manner.
By REG, LIN , CF , CS, and RE we denote the classes of languages generated by

regular, linear, context-free, context-sensitive, and unrestricted grammars, respectively.

2.2. Locally commutative context-free languages

We now de1ne a variant of context-free grammars, for which the order of the
symbols on the rules’ right sides does not matter. Therefore we call them locally

236 M. Cavaliere, P. Leupold / Theoretical Computer Science 321 (2004) 233–248

commutative context-free grammars. They are de1ned exactly as conventional context-
free grammars, only with the additional condition that for any rule A→ u in the rule
set, also all rules A→ �(u) are in the rule set, where �(u) is a permutation of u.

Instead of writing a list of all these rules, we write each rule in the form A→ [B1; : : : ;
Bn], where the Bi can be terminals or non-terminals. The rule is applied by replacing
A in a sentential form by a string of all the Bi in an arbitrary order. Right sides of
length one can also be written without brackets. As one might expect, this variant is
signi1cantly weaker than general context-free grammars.

Theorem 1. The family of locally commutative context-free languages is a proper
subfamily of the family of context-free languages, i.e. LCCF ⊂CF .

Proof. The inclusion holds by de1nition. To show its properness, we consider the regu-
lar language L= a+b+ and suppose it is generated by a locally commutative context-free
grammar. Instead of looking at the generation of certain symbols, we look at the genera-
tion of the borders between them. Every rule with a right side of length greater than one
generates new such borders. Because all rules are context-free, the parts of the senten-
tial form on the left and right of any border stay separate for the rest of the derivation.
Suppose now that L is generated by a locally commutative context-free grammar.

Looking at a word ambn with m; n ¿ 1, in some step the border |ab between the last
a and the 1rst b must be generated in a derivation by applying a rule that produces
a string U1|abU2 with U1; U2 non-empty strings. Obviously, the U1 derives to a string
from a+ and U2 derives to a string from b+. However, due to the commutative nature
of the rules also the string U2U1 could have been derived and using the same rules
for the rest of the derivation, a string containing a border |ba (hence a substring ba)
could be derived. But the resulting word is not in L. Thus, there can be no locally
commutative context-free grammar generating L.

Because the language used in the proof is regular, we also see that the class LCCF
contains neither REG nor LIN . At the same time the language of all words with an
equal number of occurrences of a and b over the corresponding two-letter alphabet can
clearly be generated by a locally commutative context-free grammar. Because it is not
linear, the LCCF is not comparable with either of the classes REG and LIN .

2.3. Automata with singular output

There exist already many types of transducers mapping strings into other strings. For
the observers as described in the introduction, however, we need a device mapping
arbitrarily long strings into just one singular symbol. Therefore we de1ne a special
variant of 1nite automata: the set of states is labelled with the symbols of an output
alphabet � or with �. Any computation of the automaton produces as output the label of
the state it halts in (we are not interested in accepting=not accepting computations and
therefore also not interested in the presence of 1nal states); because the observation of
a certain string should always lead to a 1xed result, we consider here only deterministic
and complete automata.

M. Cavaliere, P. Leupold / Theoretical Computer Science 321 (2004) 233–248 237

This way an automaton with singular output is a tuple A=(Z; V; �; z0; �;) with
state set Z , input alphabet V , initial state z0 ∈Z , and a complete transition function �
as known from conventional 1nite automata; further there is the output alphabet � and
a labelling function : Z �→�∪ {�}. The output of the automaton is the label of the
state it stops in. For a string w∈V ∗ and an automaton A we then write A(w) for this
output; for a sequence w1; : : : ; wn of n ¿ 1 strings over V ∗ we write A(w1; : : : ; wn)
for the string A(w1) · · ·A(wn).
Moreover, we will often also want the observer to be able to reject some words.

To realize this we simply choose a special symbol ⊥ =∈� and an extended output
alphabet �⊥ =�∪ {⊥}; then is a mapping from the set of states Z to �⊥ ∪ {�}. ⊥
is produced, when a bad sentential form is observed and thus the entire sequence is to
be rejected. Then, using the intersection with the set �∗, it is possible to 1lter out the
strings produced containing the special symbol ⊥.
The class of all (deterministic) automata with singular output will be denoted by

FAO. In the same way observers can be obtained from other well-known classes of
automata such as pushdown automata, linear bounded automata or Turing machines.

2.4. G=O systems

Now we de1ne the central notion of this paper, the G=O system. This is a special
case of the general architecture proposed in the introduction.
A G=O system is a pair "=(G;A) constituted by a generative grammar G=(N; T;

S; P) and an observing automaton with singular output A=(Z; V; �; z0; �;) with output
alphabet �, which then is also the output alphabet of the entire system. The automaton’s
input alphabet must be the union of N and T from the grammar to make the desired
interaction possible, i.e. V =N ∪T .
We distinguish three diAerent modes of generation that de1ne three diAerent models

of G=O systems:
(i) writing a non-empty output in every step (always writing G=O system),
(ii) writing a non-empty output in every step after an intialization phase of writing

only � (initial G=O system), and
(iii) changing between empty and non-empty output in an arbitrary manner (free G=O

system).
In the case of an always writing G=O system " the language generated is

La(") = {A(w1; w2; : : : ; wn)|S = w0 ⇒G w1 ⇒G · · · ⇒G wn

∧wn ∈ T ∗ ∧ ∀i ∈ {1; : : : ; n}[A(wi) �= �]}:

Note that the very 1rst sentential form, which is always the starting symbol, is excluded
from the observation. Otherwise all words in L(") would start with the same letter, if
the observer was deterministic. The best way to ensure the last condition, i.e. that � is
never written as output, is of course to de1ne the observer in such a way that it can
never produce empty output.

238 M. Cavaliere, P. Leupold / Theoretical Computer Science 321 (2004) 233–248

For an initial G=O system the output is de1ned as

Li(") = {A(w0; w1; : : : ; wn)|S = w0 ⇒G w1 ⇒G · · · ⇒G wn ∧ wn ∈ T ∗

∧ ∀i ∈ {1; : : : ; n}[A(w0; w1; : : : ; wi−1) �= � implies A(wi) �= �]}:
Finally, a free G=O system generates a language in the following non-restricted manner:

Lf (") = {A(w0; w1; : : : ; wn)|S = w0 ⇒G w1 ⇒G · · · ⇒G wn ∧ wn ∈ T ∗}:
Thus in all three cases the language contains all those words which the observer
can produce during the possible terminating derivations of the underlying grammar.
Derivations which do not terminate do not produce a valid output; this means that
we only take into account 1nite words. Of course, by considering the other case of
non-terminating derivations the G=O systems could also be used to generate languages
of in1nite words.
We have already mentioned and will actually mainly investigate the variant, where

the observer can also produce a special symbol ⊥ =∈ �; whenever it appears in a word,
this word should not be considered for the output language, thus we take

L⊥;a(") = La(") ∩ �∗:

Analogously the languages L⊥;i(") and L⊥;f (") are de1ned.
For a class G of grammars and a class O of observers, La(G;

O), Li(G;O), Lf (G;O), L⊥;a(G;O), L⊥;i(G;O), and L⊥;f (G;O) denote the classes
of all languages generated by G=O systems with grammars from G and observers from
O in the respective modes. Quite obviously we obtain for 1xed classes of grammars G
and observers O the inclusions

La(G;O) ⊆ Li(G;O) ⊆ Lf (G;O)

and the same for the variants where the special symbol ⊥ can be written.
In a completely analogous way, L=O systems can be de1ned, where the grammar is

replaced by an L system. Here we refrain from doing so more formally, because in
the sequel this notion will only be used on a rather informal level.
For simplicity, in what follows, we present only the mappings that the observers

de1ne, without giving a real implementation (in terms of 1nite automata) for them.

3. Always writing G=O systems

The 1rst mode of generation we will investigate is the one of writing an output in
every step, i.e. we consider the model of always writing G=O systems. This is maybe
the most natural one, since in most cases the observation of an experiment should be
complete, at least if about the outcome nothing is known beforehand. We will consider
here the variant where also ⊥ can be written as output.
We can see that every context-free language L is in L⊥;a(CF; FAO). For this consider

the Greibach normal form. There all right sides of rules are elements of TN ∗; this

M. Cavaliere, P. Leupold / Theoretical Computer Science 321 (2004) 233–248 239

means that in every step exactly one terminal is produced. Since the grammar is still
context-free, there is a leftmost derivation for every word in L. In this derivation all
sentential forms except the initial S are strings over T+N ∗. An observer can check
that a derivation produces only sentential forms of this structure. Then it can output
the rightmost terminal for each one of these sentential forms, and the result equals the
string derived by the original grammar.
However, L⊥;a(CF; FAO) is bigger than only CF . As an example for a non-context-

free language from this class we present {anbncn|n¿0}. The grammar for this is

G = ({S; A; B; C}; {t}; S; {S → A; A → AB; A → C; B → C; C → t}):
The derivations whose observations will result in the output of words anbncn are the
ones of the form

S ⇒ A n−1⇒ ABn−1 ⇒ CBn−1 n−1⇒ Cn ⇒ tCn−1 n−1⇒ tn:

To produce the output and rule out all other derivations, the observing automaton A
will realize the following mapping from the set of sentential forms of G into {a; b; c;⊥}:

A(w) =

a if w ∈ AB∗;
b if w ∈ C+B∗;
c if w ∈ t+C∗;
⊥ else:

While {anbncn|n¿0} is still semi-linear, also the language {a2n |n¿0}, which is not
semi-linear, lies in the class L⊥;a(CF; FAO). To show this, we 1rst recall that a bi-
nary tree of depth k has exactly 2n − 1 nodes, if the root is considered to already
have depth one. Therefore a context-free grammar, which can have full binary trees
as derivation trees, and an observer, which can check that only such derivations are
made, can generate {a2n |n¿0} when interacting in a G=O system. For this example
our grammar is G=({S; A; B; C; T1; T2; T3}; {t}; S; P), where the set P of productions is
{S →A; A→BB; B→CC; C →AA; A→BT1; B→CT2; C →AT3; A→ t; B→ t; C → t;
T1 → t; T2 → t; T3 → t}.
Now, for example, derivations resulting in the outputs a2 and a8 are

S ⇒ A ⇒ t

and

S ⇒ A ⇒ BB ⇒ CCB ⇒ CCCT2 ⇒ tCCT2 ⇒ ttCT2 ⇒ tttT2 ⇒ tttt;

respectively. The conditions that the observer has to check (for putting out a in every
step) are rather straightforward to see after the 1rst example.
A sentential form containing any A must be completely changed to one from B∗,

the same from B to C, and 1nally from C to A. This is done by use of the rules
A→BB; B→CC and C →AA, respectively. To ensure that the entire sentential form
is completely changed, the observer maps to a only the sentential forms of the form
A+B∗ ∪B+C∗ ∪C+A∗— others result in the output ⊥. We notice that there are never
more than two diAerent non-terminals present at the same time.

240 M. Cavaliere, P. Leupold / Theoretical Computer Science 321 (2004) 233–248

To stop the derivation the rightmost non-terminal of the sentential form must pro-
duce the corresponding Ti, with i∈ {1; 2; 3}, by using one of the rules A→BT1,
B→CT2, or C →AT3, and then the only possible further steps are to derive all non-
terminals to t. In these cases, the sentential forms mapped to a must be of the form
t∗A∗T3 ∪ t∗B∗T1 ∪ t∗C∗T2 ∪ t+.

Therefore the mapping of the observer is

A(w) =

a if w ∈ A+B∗ ∪ B+C∗ ∪ C+A∗∪

t∗A∗T3 ∪ t∗B∗T1 ∪ t∗C∗T2 ∪ t+;
⊥ else:

We note here one diAerence between the two examples: while in the 1rst case for a
word of length n the workspace used by the grammar is n=3, in the second case the
space is logarithmic in the length of the output.
Trying to characterize the class L⊥;a(CF; FAO) more closely, we can easily see that

it is contained in the class of context-sensitive languages. In fact, the G=O system
must write a symbol of output at each step and then the total space used by such a
system for the generation of a word w is bounded by a constant depending only on
the context-free grammar. Therefore, every language generated by an always writing
G=O system is context-sensitive by the workspace theorem [7].
Here we leave open the question, whether the classes of context-sensitive languages

and L⊥;a(CF; FAO) are identical, or whether the latter is properly included in the
former. We do, however, suspect the following.

Conjecture 2. CS\L⊥;a(CF; FAO) �= ∅.

To prove this one might search for a language whose generation by an LBA in-
evitably requires the entire (linearly bounded) space and at the same time heavily
reuses all this space. Actually, even a lower bound of n + 1 steps for the generation
of a word of length n by an always writing G=O system would su>ce. For example,
the language over the alphabet {a} consisting of all words of prime length appears as
a good candidate for this.

4. Initial G=O systems

The second variant of G=O systems is called initial G=O system and in this model
the sentential forms of an initial phase are mapped exclusively to �. After the 1rst
non-empty output only non-empty outputs can be produced—looking back to the bio-
chemical motivation of the concept of evolution and observer, this would correspond
to a phase of initializing an experiment and then a phase of actual observation.
Such an initialization phase—which in our case is not restricted, but can be much

longer than the actually observed phase—greatly enhances the power of our G=O sys-
tems. Indeed, with the same classes of grammars and observers as in Section 3 we
obtain computational universality in this case. For the proof of this we 1rst recall
the Kuroda normal form of generative grammars: For every recursively enumerable

M. Cavaliere, P. Leupold / Theoretical Computer Science 321 (2004) 233–248 241

language there exists a grammar generating it, which has only productions of the
forms A→BC; A→ a; A→ �; AB→CD, where the capital letters are non-terminals, and
the lower-case letter stands for terminals.

Theorem 3. L⊥;i(CF; FAO)=RE.

Proof. The inclusion from left to right is obvious, because every G=O system of the
considered type can be simulated by a Turing machine. To show the opposite direction,
we start from a grammar G1 = (N; T; S; P1) in Kuroda normal form and construct an
equivalent G=O system with a context-free grammar G2 = (N2; T; S; P2) and an FAO
observer A such that L⊥;i(G2;A)=L(G1).
For every derivation of G1 resulting in a word w, grammar G2 will derive a sen-

tential form of nonterminals a corresponding to the letters a of w. Up to that point
no output is written. Then, starting from the front, the non-terminals are rewritten
to the corresponding terminals, and always the last one already converted is written
to the output by the observer. Except for the last phase this follows very closely
the lines of the universality proof for conditional grammars as given by Dassow and
P9aun [3].
Our starting point will be G1. The rules of the forms A→BC; A→ a, and A→ �

from G1 we can adopt for G2 without any change. Only the rules AB→CD have
to be simulated by the context-free grammar in several steps. For this we assume a
one-to-one labelling from the set P′

1 of all these rules in G1 into r1; : : : ; rl; without
loss of generality we can assume that the four non-terminals of each such rule are
distinct. Further we will use a set T = {a|a∈T} of non-terminals and for every rule
r : AB→CD a set Ri = {Ar; Br; Cr; Dr}. Then we have

N2 = N ∪ T ∪
⋃
ri∈P′

1

Ri

as the set of non-terminals of G2. The set of rules is

P2 = {A → BC; A → �|productions of P1}
∪ {A → a|A → a ∈ P1}
∪ {A → Ar; Ar → Cr; Cr → C;

B → Br; Br → Dr; Dr → D|r : AB → CD ∈ P′
1}

∪ {a → a|a ∈ �}:

With this grammar any derivation of G1 can be simulated, where all applications of
rules of the forms A→BC; A→ a, and A→ � can be done in one step, just as in the
original grammar. Only when rules of the form AB→CD have to be simulated, the
execution of the necessary steps in the correct order must be guaranteed by the observer
such that only derivations possible already in G1 can be realized. How all this is done

242 M. Cavaliere, P. Leupold / Theoretical Computer Science 321 (2004) 233–248

can be seen again by looking at the mapping the observer A realizes:

A(w) =

� if W ∈ N ∗;
� if w ∈ N ∗ArN ∗ and r : AB → CD ∈ P′

1;

� if w ∈ N ∗ArBrN ∗ and r : AB → CD ∈ P′
1;

� if w ∈ N ∗CrBrN ∗ and r : AB → CD ∈ P′
1;

� if w ∈ N ∗CrDrN ∗ and r : AB → CD ∈ P′
1;

� if w ∈ N ∗DrN ∗ and r : AB → CD ∈ P′
1;

� if w ∈ T
∗
N ∗;

ai if w ∈ T ∗aiT
∗
;

⊥ else:

As all the cases (except N ∗ and T
∗
N ∗, which have equal output �, though) are

disjoint and described in a regular way, clearly a 1nite automaton with singular output
can realize this mapping. The structure of the case T ∗aiT

∗
guarantees that the resulting

word is read from left to right and only after all non-terminals remaining in the case
T

∗
N ∗ have been converted to non-terminals from T .

Using this last theorem we can also give a characterization of the recursively enu-
merable languages in terms of always writing G=O systems. For this we need to recall
the de1nition of the left quotient of one language with another. Given two languages
L1 and L2 over a common alphabet �, the left quotient of L1 with respect to L2 is

L2\L1 = {w ∈ �∗| there is x ∈ L2 such that xw ∈ L1}:
Using now the same construction as in the proof of Theorem 3, only writing a special
letter c instead of �, we arrive at the following result.

Corollary 4. Every recursively enumerable language over an alphabet � is the left
quotient of some L⊥;a(G;A) with c∗, where c =∈ �, G is a context-free grammar and
A is a :nite automaton with singular output with output alphabet �∪ {c}.

5. Free G=O systems

An immediate corollary of Theorem 3 is the fact that L�;⊥(CF; FAO)=RE. In this
section, however, we show how a G=O system composed of even less powerful compo-
nents, namely a locally commutative context-free grammar and a 1nite state automaton
is universal, if the output � can be used without any restriction and if some derivations
can be ignored by using the symbol ⊥.

We give here only the sketch of the proof, because the idea is very similar to
the proof given for the universality of a evolution=observation system composed by a
membrane system, with non-cooperative rules, observed by a multiset 1nite automaton
[1]. Essentially the membrane system’s evolution must be sequentialized, therefore we
concentrate here on the grammar.

M. Cavaliere, P. Leupold / Theoretical Computer Science 321 (2004) 233–248 243

The proof is based on the fact that every recursively enumerable language is accepted
by a two-counter automaton [4]. These are automata with an input tape, which they
can read from left to right only; they have two counters, the operations for which are
increment by one, decrement by one, or remain unchanged. At each step, the automaton
is in a certain state, a symbol from the input alphabet is read from the input tape, and
it checks, if the values of two counters are zero. Then the automaton assumes a new
state, moves the input head and the values of the two counters are changed, if required.
An input word is accepted, if it is completely read, and the automaton stops in a 1nal
state with both counters being empty. So the transition function is

� : Q ×A× {z; nz} × {z; nz} �→ Q × {stay; right} × {+1; 0;−1} × {+1; 0;−1}:

This is the format we will refer to, when simulating a two-counter machine. The
meanings of the components are the following: Q is the set of states, and A is the
input alphabet; z and nz mean, respectively, that the counter is zero or not zero, stay
and right are the movement orders for the head of the input tape, +1; 0;−1 are the
orders for the changing of the value of the counters.
Two-counter automata serve very well for our purposes, because in contrast to a

stack or a working tape a counter can be simulated without paying attention to the
order of its elements; they are all the same and can therefore be distributed freely
throughout the entire sentential form.

Theorem 5. L⊥;f (LCCF; FAO)=RE.

Proof. From an arbitrary two-counter automaton C accepting a language L, and thus
for any recursively enumerable language L, we construct a G=O system "=(G;A)
composed by a locally commutative context-free grammar G and a 1nite automaton
with singular output A, such that L⊥;f (")=L. The grammar will 1rst generate the
letters of the output word, then simulate a computation of C; all this is done with the
sentential form consisting only of non-terminals, i.e. everything remains rewriteable.
In a 1nal phase, G rewrites everything to terminals to end the derivation and thereby
the computation of the entire G=O system. The observer’s task is to guarantee that the
grammar’s derivation steps occur in the desired order.
Since C has only a 1nite number of transitions, we can label them starting from T0;

we will in the sequel speak of “transition Tt” or just “Tt” instead of “the transition
with label Tt”.
Now the locally commutative context-free grammar G for our system is the quadruple

(N; {c; f}; S; P) where

N = {S; .0; .1; .2; .3; M;M ′; M ′′; Mpop; N; N ′; N ′′; Npop; �}
∪ {Ai; A′

i ; Ai|ai ∈ A}
∪ {Tt |tj is a transition}
∪ {Sk |sk ∈ Q}:

244 M. Cavaliere, P. Leupold / Theoretical Computer Science 321 (2004) 233–248

The set of productions of G is

P = {S → [Ai; S]; S → [S0; .0]}
∪ {Ai → A′

i |ai ∈ A}
∪ {.0 → .1; .1 → .2; .2 → .3; .3 → .0}
∪ {M → Mpop; M → M ′; Mpop → �; M ′ → M;M ′′ → M}
∪ {N → Npop; N → N ′; Npop → �; N ′ → N; N ′′ → N}
∪ {Sk → S ′

k ; S
′
k → �|sk ∈ Q}

∪ {Sk → f|sk is a 1nal state of A}
∪ {X → c|X ∈ N}
∪ {Tt → �|Tt is a transition}
∪ {A′

i → [Sk ;M ′′; N ′′; Tt];

Ai → [Sk ;M ′′; N ′′; Tt]|Tt is �(s; ai; 3; 4) = [sk ; right;+1;+1]}
∪ {A′

i → [Sk ;M ′′; Tt];

Ai → [Sk ;M ′′; Tt]|Tt is �(s; ai; 3; 4) = [sk ; right;+1; 5]}
∪ {A′

i → [Sk ; N ′′; Tt];

Ai → [Sk ; N ′′; Tt]|Tt is �(s; ai; 3; 4) = [sk ; right; 5;+1]}
∪ {A′

i → [Sk ; Tt];

Ai → [Sk ; Tt]|Tt is �(s; ai; 3; 4) = [sk ; right; 5; 5]}
∪ {A′

i → [Sk ;M ′′; N ′′; Tt ; Ai];

Ai → [Sk ;M ′′; N ′′; Tt ; Ai]|Tt is �(s; ai; 3; 4) = [sk ; stay;+1;+1]}
∪ {A′

i → [Sk ;M ′′; Tt ; Ai];

Ai → [Sk ;M ′′; Tt ; Ai]Tt is �(s; ai; 3; 4) = [sk ; stay;+1; 5]}
∪ {A′

i → [Sk ; N ′′; Tt ; Ai];

Ai → [Sk ; N ′′; Tt ; Ai]|Tt is �(s; ai; 3; 4) = [sk ; stay; 5;+1]}
∪ {A′

i → [Sk ; Tt ; Ai];

Ai → [Sk ; Tt ; Ai]|Tt is �(s; ai; 3; 4) = [sk ; stay; 5; 5]}
for all ai ∈ A; s; sk ∈ Q; 3; 4 ∈ {z; nz}; 5 ∈ {0;−1}:

We describe a derivation in G that results in a valid output by A and along the
way we hint to the conditions that this automaton has to check. We shall see that it
will essentially su>ce to check whether certain non-terminals are present zero, one, or
more times (and these conditions can be represented using a regular expression and
then checked by the observer).
To simulate a computation of the two-counter automaton accepting a word w, the

grammar 1rst produces in a regular derivation the word wS from S; here w stands for
the word of nonterminals Ai corresponding to the word of letters ai in the obvious

M. Cavaliere, P. Leupold / Theoretical Computer Science 321 (2004) 233–248 245

way. Once W is generated, the rule S → S0.0 introduces the initial state of C and .0

to synchronize the further steps. The actual simulation of C can begin.
For a transition reading a new symbol, one Aj from the sentential form is selected

to be read and marked by converting it to A′
j. Depending on whether the transition

will pop from a counter or not, one M and one N are changed to Mpop, Npop or M ′,
N ′. Ending this preparation phase, also the state symbol is primed.
After the application of the rule .0 →.1, i.e. when all the mentioned symbols are

present, and an A′
j has been “read”, the observer produces the corresponding aj as an

output. This is the unique situation where A produces a non-empty output other than ⊥.
Now the transition to be applied is selected, by applying the unique rule with the

corresponding Tt in its right side. This is a very crucial step, because the compatibility
of the transition and the symbols present must be checked by the observer: had the
change of the stack been guessed right? Was the original state—still being present as
S ′
l—one in which Tt can be applied? We shall look at the conditions to be checked in
some more detail and 1rst recall that we can view a transition as an element of the set

Q ×A× {z; nz} × {z; nz} × Q × {stay; right} × {+1; 0;−1};×{+1; 0;−1}:
The S ′

l and Sk present in the sentential form are the two elements from Q, the states
before and after execution of the transition, respectively. Since they are unique for
each transition Tj, their correctness can be checked. The letter from the input alphabet
does not have to be checked, because any Tt is produced directly from the correct Aj.
The emptiness of the counters is equivalent to the non-occurrence of M and M ′ and
Mpop or the respective N s. The correct move of the input head is already implicit in
the rule producing Tt .

Moreover the observer must also check whether the update of the values of the
counters is done correctly. Here the presence of only Mpop stands for decrement, the
presence of only M ′ will result in an unchanged counter, and the presence of M ′ and
M ′′ increments the counter, M ′′ alone increments an empty counter, and non-occurrence
of all three means that there was an empty counter (no M) and it is not incremented.
All other combinations of the three symbols are illegal, for the other counter the N ’s
are checked analogously. Since every Tt eAects a unique stack behaviour, this check
does not require any additional states of A. If not everything is alright, ⊥ is written
as output.
The next step in C’s simulation is the production of .2, which signals the beginning

of the 1nal phase, where all the symbols not necessary any more are cleaned up. In
the remaining steps the stack symbols are either restored to M and N or converted
to �. Also Tt and S ′

k become �; this symbol is ignored by the observer in the sequel.
Finally, when .3 is present, A checks that this clean-up has completely been done.
Now again we have arrived at a sentential form ready for the application of another
transition, and .0 can be produced.
In a very similar manner transitions not reading anything new from the input tape

are simulated. Only in the 1rst step no symbol A′
j is produced, but rather Aj is present

from the start in the sentential form. It was already produced in the simulation of the
last transition, which did not move the input head and therefore left Aj as a copy of
the symbol it had read.

246 M. Cavaliere, P. Leupold / Theoretical Computer Science 321 (2004) 233–248

In contrast to the corresponding previous case no letter aj must be produced as
output, because the symbol read from the input tape has already been read in a previous
step. In this case the Aj present selects the transition Tt to simulate (analogously to
the A′

j in the previous case); then this transitions simulation continues with sentential
forms of the same content as already explained for the latter case.
The two-counter automaton accepts a word, if it has read the entire input, the counters

are empty and it is in a 1nal state. Therefore for all 1nal states a derivation to the
terminal f exists. Whenever f and only non-terminals are present, the observer can
check whether these conditions are satis1ed (no M , N , Ai), and otherwise output ⊥.
Once f is present, no more transitions of C can be simulated and the observer maps
every sentential form to �. With a termination of the derivation taking all remaining
non-terminals to c, the grammar stops and w has been produced as output.
Because the special symbol ⊥ is introduced every time that the conditions checked

by the observed are not respected and because of the synchronization provided by
the .’s, then every output word is also accepted by C and, on the other hand, every
computation of C can be simulated in ".

We remark the fact that in this proof a locally commutative context-free grammar
works well, because the order of the symbols in the sentential forms observed by the
automaton is not relevant. This is even true to the extent that the order given by the
string could be completely abandoned. Thus the same result could be obtained for
context-free (in that case equivalent to regular) multiset grammars as introduced by
Crespi-Reghizzi and Mandrioli [2] under the name commutative context-free grammars
and later developed further by Kudlek et al. [5]. As observers appropriate multiset 1nite
automata like the ones used for membrane systems [1] should be employed. For the
above result we used locally commutative context-free grammars, because we wanted to
stay within classical formal language theory and did not want do abandon the concept
of a string.
Taking into account the close relation between context-free grammars and 0L sys-

tems, it is natural to expect a similar result for L systems. And indeed we immediately
obtain a corresponding result for a system consisting of an E0L sytem and again a 1nite
automaton. For details about L systems we refer to the chapter on this topic in [7].

Corollary 6. Every recursively enumerable language can be generated by a free L=O
system constituted by an E0L system and a :nite automaton with singular output.

Proof. From the grammar of Theorem 5, we can construct an E0L system with the
same set of rules plus a rule X →X for each non-terminal of the grammar except
the synchronizing .’s. Thus the enforced changing of . in every step ensures that all
the other changes are made, especially that a con1guration producing an output does
not remain unchanged and produces this output twice. Using the same observer, this
L=O system generates the same language as the G=O system from Theorem 5.
Another interesting fact is that intuitively the observer’s ability to produce ⊥,

i.e. to eliminate certain computations, seems a powerful and essential feature in all
three models investigated in this and the previous sections. However, we obtain all

M. Cavaliere, P. Leupold / Theoretical Computer Science 321 (2004) 233–248 247

recursively enumerable languages over � simply by intersection of a language over
�⊥ with the regular language �∗. Since recursive languages are closed under intersec-
tion with regular sets, there must exist some grammar=observer systems " generating a
non-recursive Lf ("). Because in the proof of Theorem 5 we make very heavy use of
the option to trash strings, it is by no means obvious, how this result can be obtained
in a direct way.

6. Final remarks

The most common computationally universal device is the Turing Machine. We will
now compare this model to the G=O systems introduced here. This will exhibit some
parallels and diAerences maybe not obvious at 1rst sight. The Turing Machines we will
speak about have a combined input=working tape, a 1nite state control and an output
tape, on which they can only write.
This general setup resembles very much that of the G=O systems. In the sentential

form of the context-free grammar one symbol can be rewritten in any step—if during
almost the entire computation the sentential form consists of non-terminals as in Theo-
rem 3, then at any time basically every symbol can be rewritten. The 1nite automaton
generates an output depending on the content of the sentential form, just like the 1nite
state control does depending on the symbol read from the input=working tape. So what
are the diAerences?
For one thing the interaction between control and workspace is greatly decreased:

the automaton only writes the output, but has no direct in<uence on the changes in the
sentential form. Further it always starts in the same initial state and therefore cannot
remember anything from the earlier computation steps. All this is compensated by the
ability to read the entire workspace in every step. Thus the automaton can on the one
hand have some memory of earlier steps there and on the other hand, based on this
memory, it can check, whether the grammar has made exactly the changes which in a
Turing machine the control would eAect directly.
Using only regular grammars would mean that basically nothing that is written on the

workspace can be rewritten. Therefore we conjecture that G=O systems with both the
grammar and the observer regular should themselves only generate regular languages. If
this proves to be true, then the same might hold for linear grammars, whose sentential
forms also contain at most one non-terminal at a time.
There are many other interesting questions that remain to be answered about the

G=O system architecture. The most interesting open problem left in this paper is the
exact characterization of the languages generated by always writing G=O systems: are
they the context sensitive languages? If—as we have conjectured—this is not the case,
which are the properties of this language family? Perhaps it equals some family known
from regulated rewriting.
Further, we have only marginally treated all the variants, where all observed be-

haviours must be considered and ⊥ is not used. While we have mentioned that also
these generate some non-recursive languages in the cases discussed in Sections 4 and
5, it seems doubtful that they are universal.

248 M. Cavaliere, P. Leupold / Theoretical Computer Science 321 (2004) 233–248

Of course, there remains the possibility to apply the architecture introduced to even
other types of generating devices like contextual grammars, or to formal models of
biological systems other than membrane systems, where some kind of evolution can
be observed.

Acknowledgements

The authors are very thankful to Gheorghe P9aun for very interesting discussions as
well as many comments and suggestions on drafts of this work. Thanks are also due
to Victor Mitrana and Max Garz5on for their helpful and interesting comments.

References

[1] M. Cavaliere, P. Leupold, Evolution and observation—a new way to look at membrane systems, in:
A. Alhazov, C. Mart56n-Vide, Gh. P9aun (Eds.), Tech. Rep. No. 28/03 Research Group on Mathematical
Linguistics, Tarragona; Pre-proc. of the Workshop on Membrane Computing 2003, Tarragona, Spain;
http://pizarro.<l.urv.es/continguts/linguistica/proyecto/reports/wmc03.html.

[2] S. Crespi-Reghizzi, D. Mandrioli, Petri nets and commutative grammars, Tech. Rep. 74-5, Istituto di
Elettrotecnica ed Elettronica—Politecnico di Milano, 1974.

[3] J. Dassow, Gh. P9aun, Regulated rewriting in formal language theory, Springer, Berlin, 1989.
[4] J.E. Hopcroft, J.D. Ullmann, Introduction to Automata Theory, Languages and Computation,

Addison-Wesley, Reading, MA, 1979.
[5] M. Kudlek, C. Mart56n Vide, Gh. P9aun, Towards a formal macroset theory, in: C. Calude, Gh. Paun,

G. Rozenberg, A. Salomaa (Eds.), Multiset Processing, Lecture Notes in Computer Science, vol. 2235,
Springer, Berlin, 2001, pp. 123–133.

[6] G. Rozenberg, A. Salomaa, Watson–Crick complementarity, universal computations and genetic
engineering, Tech. Rep. 96-28, Department of Computer Science, Leiden University, 1996.

[7] G. Rozenberg, A. Salomaa (Eds.), Handbook of Formal Languages, Springer, Berlin, 1997.

http://pizarro.fll.urv.es/continguts/linguistica/proyecto/reports/wmc03.html

	Evolution and observation---a non-standard way to generate formal languages
	Introduction: when evolution is computation
	Preliminaries
	Formal language theory
	Locally commutative context-free languages
	Automata with singular output
	G/O systems

	Always writing G/O systems
	Initial G/O systems
	Free G/O systems
	Final remarks
	Acknowledgements
	References

