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Romania





Foreword

Not being a big friend of rituals and formalities, I was thinking about
leaving out the usual sermon of thank-yous that opens all the theses
I have read. However, I now have strong doubts that I will explicitly
express the gratitude I feel in the context of this thesis towards many
people. Therefore I have decided to follow the tradition of listing
them here anyway.
Foremost I want to thank both my supervisors. Victor Mitrana who

not only introduced me to the topic of duplication but kept me ac-
tive in the beginning by continuously inviting me to participate in his
work. Juhani Karhumäki first suggested the generalization to idem-
potency and I have learned a great many things about birds and
the Finnish outdoors in general on the various excursions, on which I
could accompany him. Both have helped and guided me as much as
I have let them, although I am not an asker of many questions.
Further thanks are due to many people, who have helped me over

the last few years. The wonderful circumstances of the PhD School
in Formal Languages and Applications were created by Carlos Martín
Vide, who never seems to tire of searching for sources of funding.
Masami Ito was a very kind and generous host during my stay in
Kyoto. Matteo Cavaliere was a wonderful partner for both political
discussions and scientific work during my first years in Tarragona.
More than anyone else Rebeca Tomás Smith and Rafel Escoda Rosich
have made me feel at home in Tarragona, and most of my Català I
owe to them.
Among my co-authors on the topics of this thesis, those not yet

mentioned above are José Sempere and Kayoko Shikishima-Tsuji.
Also the interaction with them was important for my ideas to evolve
to the state presented here. In this context also a number of anony-
mous referees should be mentioned, whose comments helped to
greatly improve some of the work presented here.
Human beings do not live on air alone, even mathematicians need

someone to support them economically. In my case this has mainly
been done by the Spanish Ministry of Culture, Education and Sport
under the Programa Nacional de Formación de Profesorado Universi-
tario (FPU); it has also facilitated two stays in Turku and one in Kyoto.

5



Before this, the Spanish Foreign Ministry supported me under the
programme BecasMAE. Further, I am thankful for travel grants to the
conferences WORDS03 in Turku, DNA10 in Milano, and CANT06 in
Lüttich as well as two short trips to Budapest, Szombathely, and De-
brecen financed by a Hungarian-German Project headed by Manfred
Kuflek. All these travels have taught me that, besides concentrated
thinking and reading, listening to others and trying to explain your
thoughts are essential to get ahead in mathematics.
Finally, I should also thank the beautiful land of Catalunya. With its

marvels from the sunny beaches over the nearby mountain ranges
to the Pyrenees it has very often successfully seduced me away from
my work; but otherwise I would probably have had much less in-
spiration and motivation during the times of working. And with the
abandoned herdsmen’s shelters, the Serra de Montsant even pro-
vides perfect locations for meditating about intricate problems, be
they of mathematical or other nature.

Tarragona, September 2006
Peter Leupold

6



Contents

Foreword 5

0 Introduction 9

1 Formal Languages and Combinatorics of Words 13
1.1 Combinatorics of Words . . . . . . . . . . . . . . . . . . . . . . 13

1.1.1 Words and Periodicity . . . . . . . . . . . . . . . . . . . 15
1.1.2 Special Types of Words . . . . . . . . . . . . . . . . . . 16

1.2 Classical Formal Language Theory . . . . . . . . . . . . . . . 17
1.2.1 Generative Devices . . . . . . . . . . . . . . . . . . . . 17
1.2.2 Accepting Devices . . . . . . . . . . . . . . . . . . . . . 19
1.2.3 Closure Properties and Miscellanea . . . . . . . . . . 20

1.3 String-Rewriting Systems . . . . . . . . . . . . . . . . . . . . . 23
1.4 Accepting Languages with String-Rewriting Systems . . . 25
1.5 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2 Idempotency Languages 29
2.1 From DNA to Generalized Idempotency . . . . . . . . . . . . 29

2.1.1 String Operations Inspired by DNA . . . . . . . . . . 30
2.1.2 Duplication . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.1.3 Idempotency Relations and Languages . . . . . . . . 33

2.2 Idempotencies and Related Languages . . . . . . . . . . . . 36
2.2.1 The Burnside Problem . . . . . . . . . . . . . . . . . . . 36
2.2.2 Non-Counting Classes . . . . . . . . . . . . . . . . . . . 37
2.2.3 Stuttering Languages . . . . . . . . . . . . . . . . . . . 38
2.2.4 Known Results About Special Cases . . . . . . . . . . 39

2.3 General Observations . . . . . . . . . . . . . . . . . . . . . . . 41
2.4 Uniformly Bounded Idempotency . . . . . . . . . . . . . . . . 42

2.4.1 Confluence . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.4.2 Regularity . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.5 Bounded Idempotency . . . . . . . . . . . . . . . . . . . . . . 48
2.5.1 Confluence . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.5.2 Regularity . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.6 General Idempotency . . . . . . . . . . . . . . . . . . . . . . . 57
2.6.1 The One-Letter-Case . . . . . . . . . . . . . . . . . . . . 57

7



2.6.2 Confluence over Two Letters . . . . . . . . . . . . . . 58
2.6.3 Regularity over Two Letters . . . . . . . . . . . . . . . 61
2.6.4 Confluence . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.6.5 Regularity . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3 Duplication 69
3.1 General Duplication . . . . . . . . . . . . . . . . . . . . . . . . 69

3.1.1 Context-Freeness . . . . . . . . . . . . . . . . . . . . . . 70
3.1.2 Decidability Questions . . . . . . . . . . . . . . . . . . 72

3.2 Roots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.2.1 Primitive Roots . . . . . . . . . . . . . . . . . . . . . . . 74
3.2.2 Other Roots . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.2.3 Idempotency Roots . . . . . . . . . . . . . . . . . . . . 77
3.2.4 Finiteness of the Duplication Root . . . . . . . . . . . 80

3.3 Duplication Codes . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.3.1 k-dup Primitive Words . . . . . . . . . . . . . . . . . . . 85
3.3.2 k-dup Codes . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.3.3 Infinite Duplication Codes . . . . . . . . . . . . . . . . 92
3.3.4 Languages Generated by Duplication Codes . . . . 95

3.4 Closure of Language Classes . . . . . . . . . . . . . . . . . . 99
3.4.1 Closure of Regular Languages . . . . . . . . . . . . . 99
3.4.2 Closure of Context-Free Languages . . . . . . . . . . 102

Concluding Thoughts 109

Interesting Problems Left Open 111

Bibliography 115

8



0 Introduction

Theoretical Computer Science has developed and also adopted quite
a number of significantly different fields. Among these, the work to
be presented here belongs most to Formal Language Theory as it
emerged from Noam Chomsky’s definition of generative grammars
in the 1950s. However, we will heavily use results and methods
from two more fields, namely Combinatorics on Words and String-
Rewriting Systems; both of these can be traced back to the work of
Axel Thue in the beginning of the twentieth century, long before the
advent of electrical computers and what is called computer science
now.
To start with, we will present in Chapter 1 fundamental concepts

from the three fields of Formal Language Theory, Combinatorics of
Word and String-Rewriting Systems; all of these will be used in our
later investigations and therefore constitute an indispensable basis
for the remainder of this thesis.
Much of the current work in Formal Language Theory has been in-

spired by mechanisms observed in molecular biology. Most promi-
nently, the computational power of recombinations occurring in DNA
is investigated, when applying these operations on general strings.
Also our work has its origin in such a DNA operation, namely in dupli-
cation.
Chapter 2 will outline the original motivation for introducing the

formal language operation of duplication in context with other DNA-
inspired string operations. Then its generalization to idempotency
languages is described. A few spotlights are shed on the history of
idempotencies in the parts of Algebra related to formal languages,
most mentionable on the famous Burnside problem and the prob-
lem of non-counting classes. After this, the actual investigations on
idempotency languages are presented.
Starting out from a few results on special cases treated in earlier

work of other authors, we mainly focus on two types of questions.
For one thing we try and determine, which relations are confluent.
Secondly, we examine whether the languages generated by them
are regular.
First off, we treat the most restricted variant, uniformly bounded
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0 Introduction

idempotencies. Here all rewrite rules must have the same length.
This makes the problems quite resolvable, and the conditions for con-
fluence and regularity are fully characterized for all possible combi-
nations of parameters.
Already for the following variant, bounded idempotencies, where

only an upper bound is imposed on the rules’ length, more cases are
left open. Finally, for unrestricted idempotency relations we present
mainly results that carry over from the restricted cases. Interesting
questions like the context-freeness of duplication languages remain
open.
Contrary to the chronological development we then come from

general idempotency languages to duplication languages in Chap-
ter 3. Some results are presented, which have not been generalized
to general idempotencies and which seem especially interesting in
the context of the original motivation for duplication from DNA com-
puting. But before that we try and shed some light on the reasons,
why it is so difficult to determine, whether general duplication lan-
guages are context-free. Further a few decision problems related to
duplication are treated and shown to be decidable.
Section 3.2 then introduces the concept of idempotency root. This

is motivated by recalling the primitive root of words, then some re-
sults concerning duplication roots. The main interest is on the finite-
ness of roots and the decidability of this property.
In Section 3.3 we define a type of code, which is robust under

uniformly bounded duplications in the sense that such duplications
occurring in the code words do not affect the uniqueness of factor-
ization. Among other things the conditions are characterized, under
which infinite such codes exist, and the density of languages gener-
ated by these codes is investigated.
Finally, in Section 3.4 we examine the closure of the classes of

regular and context-free languages under duplication in its differently
length-bounded variants. Mainly bounded duplication is treated, for
example the closures of regular and context-free languages under
this operation is established.
A few concluding thoughts and a more detailed exposition of a

small number of selected problems left open form the conclusion of
this thesis.
The majority of the results that will be presented here has already

been published in scientific journals and been presented at confer-
ences. Because in the text we will not point out the place of publica-
tion of single results obtained by the current author, we now give an
overview of where these can already be found in the literature. Of
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course, slight improvements of proofs and presentation have been
implemented in many places.
Sections 2.4 and 2.5 are based on an article accepted for publica-

tion in Theoretical Computer Science [53]. The following Section 2.6
is mainly based on an article accepted for publication in the Journal
of Languages, Automata and Combinatorics [54], some of the re-
sults for three and more letters are again from the article about the
bounded case [53].
The considerations on the general duplication language starting

Chapter 3 are yet unpublished. Some of the following results on du-
plication represent parts of two articles in Discrete Applied Mathe-
matics [56] and the LNCS volume dedicated to Tom Head [58]; many
of the results in these two articles are, however, implied by more
general ones stated already in Chapter 2.
The results concerning primitive roots in Section 3.2.1 constitute

part of the work presented at WORDS 2003 in Turku [50], while the
remainder of Section 3.2 is formed by a talk given at the Theorietag
Automaten und Formale Sprachen of the Gesellschaft für Informatik
in Wien [55].
Section 3.3 presents results on duplication codes accepted for pub-

lication in RAIRO Informatique Théorique [57] and in part presented
earlier at WACAM 2005 in Turku [51]. Finally, the duplication closure
of languages treated in Section 3.4 has been presented at Develop-
ments in Language Theory 2006 in Santa Barbara [47].
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1 Formal Languages and
Combinatorics of Words

Before coming to the actual topic of our treatise, we need to intro-
duce the notions and tools we will employ. The results we will present
in what follows belong mainly to Formal Language Theory. Therefore
we now introduce the concepts from this field that will be referred to
later on. There are, however, two more fields of investigation, the
results of which we will use very frequently. These are Combinatorics
of Words and the theory of string-rewriting systems.
The fundamental feature connecting these three fields is the con-

cept of word as a sequence of symbols. Since single words are the
focus of Combinatorics on Words, we will take this as our starting
point. Then we move on to formal languages, i.e. sets of such words,
and to string-rewriting systems.
All the notions particular to the three fields and needed in our in-

vestigations mentioned will now be defined. However, the reader is
supposed to be familiar with basic mathematical terminology and no-
tation as used in set theory, algebra, and propositional and predicate
logic. References for further reading in each of the fields presented
here are suggested in the respective sections.

1.1 Combinatorics of Words

The concept of word we will use deviates significantly from the one
common in everyday use, where mainly words as in natural human
languages are meant. In this context the concept usually comprises
a semantic component. Thus Miller [71] states that words are “the
building blocks of language,” and in his linguistic approach he as-
sumes every word to consist of three fundamental aspects: it is “a
synthesis of a concept, an utterance, and a syntactic role.”
This means that there is a concept in our mind, a phonetic se-

quence that in some way we associate to that idea, and finally there
is a specific way to use this sequence in interaction with others to
form a sentence. However, in a naive approach to words a human
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1 Formal Languages and Combinatorics of Words

being not polluted by prior exposition to such theories will most prob-
ably describe a word simply as a sequence of sounds, or –in its writ-
ten form– as a sequence of letters, thus focusing on only the second
one of the three aspects described by Miller.
When investigating combinatorial aspects of words, we also take

this latter, basic point of view. While disregarding a word’s possible
use, place of occurrence, interaction with other words, meaning etc.,
we do partition it into its physical building blocks, its letters. Thus a
word is simply a sequence of symbols over a given alphabet. Nothing
exceeding this very abstract view is considered. Thus in common
terms we are speaking about sequences rather than words, but the
term Combinatorics of Words is well-established for this.
This concentration on the basic concept of sequentiality explains

the wide applicability of results from combinatorics of words. To some
extent human perception of the world is essentially sequential. If
we take three-dimensional space as one fundamental dimension of
our perception, then time is the second one. And time we perceive
essentially as a temporal succession of observed events, states etc.
— as a sequence. Depending on the aspect of the world we are
considering, different features of such sequences are of interest; but
in many cases combinatorics on words can be used to state them in
an abstract manner and to establish some of their properties.
One of the central points of interest in this is the study of repeti-

tions. They seem to be a feature of sequences which greatly attracts
the attention of human beings. A repeated rhythm will stick out from
other sounds, trees planted in patterns will catch our eye when look-
ing at an otherwise irregular landscape etc.
Repetitions in linear sequences of symbols were first investigated

by Thue at the beginning of the twentieth century [89, 90]. He deter-
mined whether certain repetitions are bound to occur, i.e. whether
they are unavoidable in a long enough sequence over a limited al-
phabet of symbols. The most important results are the facts that
over two letters no square-free word of length greater than three ex-
ists, while over three and more letters infinite square-free words can
be constructed. A nice summary of his work was given by Berstel [8].
Another indicator towards the fundamentality of repetitions in se-

quences is the big number of times that his results have been dis-
covered again in later years without knowledge of his work and in
quite different contexts. Most prominently in this respect is certainly
the work of Morse both in his mathematical studies [74] and his in-
vestigations on the possibility of endless chess games [75], more
rediscoveries are listed in Berstel’s article.

14



1.1 Combinatorics of Words

The standard reference for nearly all topics in Combinatorics of
Words consists in the three books of Lothaire [61, 62, 63]. The Hand-
book of Formal Languages [81] contains a separate chapter on com-
binatorics. Also Berstel and Pin’s book on infinite words contains
many related results [10], as does the book on automatic sequences
by Allouche and Shallit [4]. We now proceed to provide the definitions
and concepts from this field that we will make use of later on.

1.1.1 Words and Periodicity

As already mentioned, for us a word is a sequence of symbols over a
finite alphabet. This includes the word consisting of no symbol, which
is called the empty word and denoted by λ. The words generated
by the alphabet  together with catenation form the free monoid
denoted by ∗.
The length of a finite word  is the number of not necessarily dis-

tinct symbols it consists of and is written ||. The number of occur-
rences of a certain letter  in  is ||. The set of all letters occurring
in  is its alphabet alph(). The -th symbol we denote by []. The
notation [ . . . j] is used to refer to the part of a word starting at the
-th position and ending at the j-th position.
A word  is a prefix of  if there exists an  ≤ || such that  =

[1 . . . ]; if  < ||, then the prefix is called proper. The set of all
prefixes is pref(). A suffix is a word  such that  = [ . . . ||],
and a factor is any word such that there exist  and j such that  =
[ . . . j]. A scattered subword of , in contrast, is a word  for which
there exist integers 1 < 2 · · · < || such that for all j ∈ {1,2 . . . ||}
there is [j] =[j].
We now turn to periodicity; a word  has a positive integer k as a

period, if for all , j such that  ≡ j( mod k) we have[] =[j], if both
[] and [j] are defined. In this case,  is said to be k-periodic.
 is weakly k-periodic, if it fulfills this condition for j =  + k instead
of  ≡ j( mod k). These two notions are equivalent. We write p()
for the minimal period of the word  and P() for the set of all its
periods.
A famous result dealing with periodicity is the following theorem,

which in its original form is due to Fine and Wilf and can be found in
several forms in the book of Lothaire [61]. However, we present it in
a slightly different variant more apt to our needs later on.

Theorem 1.1.1. If a word  has two periods k and ℓ, then also
gcd(k, ℓ) is a period of .
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1 Formal Languages and Combinatorics of Words

Occasionally we will also speak about infinite words, more exactly
about right-infinite words. These have a starting point on the left-
hand side, but on the right-hand side they continue forever. The
set of all these word is denoted ω, and the exponent ω will denote
infinitely iterated catenation to the right in general.

1.1.2 Special Types of Words

Via certain properties special types of words are defined. We do this
already in natural language, for example with palindromes, which
will be defined further down. Mainly, however, the types of words
interesting to us will be defined by properties exclusively motivated
from combinatorics.
A word is primitive, iff it is not a non-trivial (i.e. with exponent

one) power of any word. Thus  is primitive, if  = k implies  = 
and k = 1; this means that λ is not primitive, because, for example,
λ4 = λ. It is a well-known fact that for every non-empty word  there
exists a unique primitive word p such that  ∈ p+; this primitive word
is called the (primitive) root of  and we will denote it by

p
. The

unique integer  such that
p

 = is called the degree of .

The next property has been defined under numerous names, see
also Section 3.2.2, we will only give the two most widely used ones
here. A word is called unbordered, also called non-overlapping, iff
none of its proper prefixes is also one of its suffixes; all other words
are called bordered or overlapping.
For a word , by R we denote its reversal, that is [|| −1 . . .0].

If  = R, the word is called a palindrome; the English words mom
and dad or the German Esse are natural language examples of palin-
dromes.
We now come to avoidability, which deals with the question,

whether certain subsequences are found in a word. For a rational
number r, a non-empty word  is a repetition of order r, iff there
exists a word  such that  is a prefix of ω and ||

|| = r. For the in-
tegers 2 and 3 repetitions of the respective order are called squares
and cubes. We will also use rational exponents to denote non-integer
powers of words in the following way: (b)

5
3 = bb.

Avoiding a certain repetition means not having any factor that con-
stitutes such a repetition. Thus a word is called r-free, iff it does not
contain any repetition of order r. If the word may contain repetitions
of order r but not of any greater order, then we call it r+-free.
These notions of avoidability are used also for infinite words.
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1.2 Classical Formal Language Theory

Thue’s pioneering work stated among other facts the fundamental
results that over two letters there are no infinite square-free words,
while there are 2+-free words; over three letters, however, there ex-
ist infinite square-free words [89, 90].

1.2 Classical Formal Language Theory

When we look at sets of words rather than individual words, we take
the step from Combinatorics of Words to Formal Language Theory.
Here the most common questions concern the complexity of a given
set of words – called a (formal) language – in terms of generating
or accepting devices. There exist several classical such hierarchies,
which we will introduce briefly. Further, we will present some impor-
tant properties of selected classes of languages. Standard references
for these results are the books by Salomaa [82] and Harrison [36] as
well as the Handbook of Formal Languages [81].

1.2.1 Generative Devices

If the sets of words we deal with are called languages and not any-
thing else, this is mainly due to the fact that they were first dealt with
in a linguistic context. In the 1950s Noam Chomsky defined genera-
tive grammars in an attempt to formalize the mechanism, by which
human beings produce utterances in their language. He introduced a
hierarchy, grouping this type of grammars by the complexity of their
rules.
While none of these classes were found to be completely adequate

for the description of human languages, they did prove to be very
useful in many other fields. Thus the mentioned hierarchy is still
the standard reference point for determining the complexity of lan-
guages in Formal Language Theory.
A (generative) grammar in the sense of Chomsky is a quadruple

G = [, N, S, P], where  is the alphabet of terminals, N is the alpha-
bet of non-terminals disjoint from , and S ∈ N is the start symbol.
The set P of productions or rules is a subset of ( ∪N)∗ × ( ∪N)∗.
With such a grammar G we associate a derivation relation ⇒G as

follows: for words , ∈ ( ∪ N)∗ we have  ⇒G  iff there exist
factorizations  = 123 and  = 123 such that (2, 2) ∈ P, i.e.
by application of one rule we can transform  into . Applying a rule
means to find its left side as a factor in a given word and to replace
it with the right side.

17



1 Formal Languages and Combinatorics of Words

Let ⇒+
G
denote the transitive closure of this relation. Then the lan-

guage generated by G is defined as L(G) := { :  ∈ ∗ ∧ S⇒+
G
}.

This means that L(G) consists of all the strings that are made up of
only terminal symbols and that can be reached from the start symbol
via the derivation relation.
There are several restricted types of generative grammars, which

are of interest. A generative grammar [, N, S, P] is called

• (left-)regular iff all rules in P are of the form [A, B] for A ∈ N,
B ∈ N ∪ {λ} and  ∈ ,

• linear iff all rules in P are of the form [A, By] for A ∈ N, B ∈
N ∪ {λ}, and , y ∈  ∪ {λ},

• context-free iff all rules in P are of the form [A, ] for A ∈ N, and
 ∈ ( ∪N)∗,

• context-sensitive or non-decreasing iff all rules in P are of the
form [, ] for , ∈ ( ∪N)∗ with || ≤ ||.

The classes of languages generated by these types of grammars
have the corresponding names. For the last one only the term
context-sensitive is in use. They are denoted by REG, LN, CF, and
CS respectively. Further FN denotes the class of finite languages,
while generative grammars without restrictions generate the class
RE of recursively enumerable languages. Now we state the result
justifying the name Chomsky-Hierarchy for these classes.

Theorem 1.2.1. FN ⊂ REG ⊂ LN ⊂ CF ⊂ CS ⊂ RE and all these
inclusions are proper.

Another very convenient form of expressing regular languages
comes from their definition as rational languages. These are the
closure of the singleton sets containing the letters under union, cate-
nation, and Kleene-star; this is called the rational closure. We now
define regular expressions and their corresponding languages (their
interpretations ϕ) as follows:

• if  is in , then  is an expression; its interpretation is {};

• if e1 and e2 are expressions, so is (e1 ◦ e2); its interpretation is
ϕ(e1) · ϕ(e2);

• if e1 and e2 are expressions, so is (e1 ∨ e2); its interpretation is
ϕ(e1) ∪ ϕ(e2);

18



1.2 Classical Formal Language Theory

• if e is an expression, so is (e)∗; its interpretation is ϕ(e)∗.

There are no other expressions. Every clause of the definition corre-
sponds exactly to one part of the definition of rational closure.
In general, we will leave away the interpretation function and

speak, for example, of the language b∗ instead of ϕ(b∗); note
that here the star has higher precedence than catenation and that
we leave away the ◦ as well as some parentheses. Thus b∗ stands
for ( ◦ (b∗)). All these simplifications are standard in the literature
and should not confuse the reader. Another standard abbreviation
we will use is denoting singleton sets {} simply by their unique
member , if this cannot lead to confusion in the respective context.

1.2.2 Accepting Devices

While grammars are good for generating words, on might also for a
given word want to find out, whether it belongs to a given language.
This is known as the word problem, and in our context it is answered
by acceptors of languages.
A device accepts a language, if it computes its characteristic func-

tion; this means it gets as an input a word, and as output it says
YES, if this word belongs to the language in question, otherwise it
outputs NO or runs forever. There is a very rich theory of this type of
automata. In particular, there is for each class of languages from the
Chomsky Hierarchy a class of automata, which accept exactly those
languages. Here we introduce only the two types of automata that
will play a role later on.
For the regular languages the corresponding devices are called de-

terministic finite automata. Such a DFA is a tuple [Q,, δ, q0, F]. Q
is the set of states,  the input alphabet. q0 ∈ Q is the start state,
F ⊆ Q is the set of final states. The transition function δ is a map-
ping Q×  7→ Q. The function δ∗ is its extension to Q× ∗ such that
δ∗(q,) := δ(δ(. . . δ(δ(q,[1]),[2]) . . .[|| − 1]),[||]). The
graphic idea behind this is that a reading head moves along the in-
put word and changes its state according to the letters it finds. The
word is accepted, if this ends in a final state.
Thus the language accepted by such a deterministic finite automa-

ton A is defined as L(A) := { : δ∗(q0,) ∈ F}. The class of lan-
guages accepted by this type of device we denote by L(DFA).
If δ is not a function, but can be any type of relation, then the device

is called a (non-deterministic) finite automaton, FA. For a given pair
of state and input letter there can be some choice for the following
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1 Formal Languages and Combinatorics of Words

state, and a word is accepted if there exists one computation that
halts in a final state. The class of languages accepted is denoted
by L(FA). While non-deterministic finite automata are often more
compact in the size of the state set for a given language, they are
not more powerful than their deterministic counterparts and coincide
with the regular languages.

Theorem 1.2.2. REG = L(DFA) = L(FA).

Maybe the strongest factor limiting the power of finite automata is
the fact that they do not have any explicit way of storing information,
i.e. they do not have memory. When we add such a memory in
the form of a (push-down) stack to them, we obtain a push-down
automaton. These are tuples [Q,,, δ, q0, γ0, F], where Q, , q0,
and F are as for finite automata.  is the stack alphabet, and γ0 is the
bottom-of-stack symbol. δ this time is a mapping Q××  7→ Q× ∗.
The interpretation here is that the PDA reads in every step an input

symbol and the top-most symbol on the stack. According to this it
changes its state and can put an arbitrary string onto the top of the
stack. The language accepted is defined analogously to the one for
finite automata. Also here deterministic and non-deterministic au-
tomata are considered, and the non-deterministic PDAs correspond
exactly to the context-free languages.

Theorem 1.2.3. CF = L(PDA).

In contrast to the case for regular languages, here the determinis-
tic version of automata does not have the same power as the non-
deterministic one. The class of languages accepted by the former
type of device are the deterministic context-free languages, DCF.

Theorem 1.2.4. DCF ⊂ CF. CF \DCF 6= ∅.

Although context-sensitive and recursively enumerable languages
will not play a big role in what follows, we want to mention here that
they are accepted by non-deterministic linear bounded automata and
Turing machines respectively.

1.2.3 Closure Properties and Miscellanea

Closure under an operation is in our context a property of language
classes. A class is said to be closed under an operation, if the ac-
tion of this operation on languages of the respective class results in
a language, which belongs again to the same class. We consider
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1.2 Classical Formal Language Theory

operations acting on one language as well as ones acting on two lan-
guages. We provide a short list of the ones important in our context.
Most of them should be well-known from set theory.

• Complement is a unary operation denoted by W,

• union is a binary operation denoted by V ∪W,

• intersection is a binary operation denoted by V ∩W,

• intersection with regular languages is a unary operation de-
noted by W ∩ REG

for languages V,W. Closure under the last one of these operations
means thatW∩U is in the same class asW for all languages U ∈ REG.
The complement is relative to the alphabet and is the set ∗ \W.
The classes from the Chomsky Hierarchy have the closure proper-

ties listed in Table 1.1, where Y signifies closure and N stands for the
respective class not being closed.

Compl ∪ ∩ ∩REG

REG Y Y Y Y
LIN Y Y Y Y
CF N Y N Y
CS Y Y Y Y
RE N Y Y Y

Table 1.1: Closure Properties.

Another important property of language classes is the decidability
of certain questions, most prominently of the word problem: given
the language L and a word , is it possible to find out with with
an effective algorithm whether  ∈ L is true? Without going into
any detail, an effective algorithm here is any computation method
in a complete model of computation like the Turing Machine. More
about decidability can be found in the references given for Formal
Language Theory in general and in more depth in the very entertain-
ing book by Rozenberg and Salomaa [80].
In a more algebraic view of languages, often the relation ∼L over

∗ × ∗ for a language L plays an important role. It is called the
syntactic right-congruence of L and is defined as follows:

 ∼L  :↔∀ ∈ ∗( ∈ L↔ ∈ L).
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1 Formal Languages and Combinatorics of Words

This is obviously an equivalence relation. It is well-known that a lan-
guage L is regular, if and only if the corresponding relation ∼L has a
finite number of equivalence classes; this number is called the index
of ∼L. Its relation to regular languages follows from a theorem of
Myhill.

Theorem 1.2.5. A language L is regular, if and only if ∼L has finite
index.

This provides us with yet another characterization of regular lan-
guages after finite automata, regular grammars, and regular expres-
sions. Next we state a property, which every regular language fulfills,
but which also other languages can fulfill. Thus it is necessary but
not sufficient for regularity and can mainly be used to show that a
given language is not regular.

Lemma 1.2.6. For every regular language L there exists an integer
k such that every word  ∈ L longer than k, has a factorization  =
123 such that 2 6= λ, |12| ≤ k and 1∗

2
3 ⊆ L.

This pumping property has its name from the fact that the factor
2 can in some sense be pumped arbitrarily without obtaining words
outside the language. A similar property exists for context-free lan-
guages. However, here the pumping occurs at two sites simultane-
ously. In this case many stronger versions like the Ogden-Lemma or
the Interchange-Lemma are known, but for our purposes the basic
and original version stemming from Bar-Hillel will suffice.

Lemma 1.2.7. For every context-free language L there exists an in-
teger k such that every word  ∈ L longer than k, has a factoriza-
tion  = 12345 such that 24 6= λ, |234| ≤ k and
1

2
3

4
5 ∈ L for all  ≥ 0.

In some contexts the actual sequence of letters is not so essential,
and we are interested only in the numbers in which the different
letters occur in a word. Then we look only at vectors of dimension
||, whose -th component is the number of occurrences of the -th
letter in the corresponding word. This correspondence is established
by the so-called Parikh mapping of a word , which is defined as
ψ() := (||1 , ||2 , . . . , ||||). It is extended in the canonical way
to languages as ψ(L) := {ψ() :  ∈ L}. Note here that different
words can be mapped to the same vector.
For sets of vectors over Nk there exists the notion of being linear,

which means that such a set A can be generated from a finite number
of vectors r0, r1, . . . , rℓ ∈ Nk such that A = {r0 +m1r1 + · · · +mℓrℓ :
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1.3 String-Rewriting Systems

m1, . . . ,mℓ ∈ N}. If a set is a finite union of linear sets, it is called
semi-linear. A language is called semi-linear, iff its Parikh set is semi-
linear. With this we can now state Parikh’s theorem, which provides
us with another necessary condition for context-freeness.

Theorem 1.2.8. All context-free languages are semi-linear.

There are several special classes of languages more that will occur
in what follows and which are defined by different means than we
have seen up to this point. A language L is called

• non-counting, iff there is an integer  ≥ 0 such that for every
y ∈ + and , z ∈ ∗, we have yz ∈ L iff y+1z ∈ L,

• dense, iff for all  ∈ ∗ we have ∗∗ ∩ L 6= ∅,

• bounded, iff there exists a finite number of words1,2, . . . ,k

such that L ⊆∗
1
∗

2
· · ·∗

k
,

• slender, iff there is a number k such that it never contains more
than k words of any given length, or more exactly |n ∩ L| ≤ k
for all n > 0.

The class of regular non-counting languages is equal to the so-
called star-free languages [68]. These are the languages obtainable
from the an alphabet’s letters by a finite number of applications of
the operations union, intersection, concatenation, and complemen-
tation.

1.3 String-Rewriting Systems

Axel Thue can be seen not only as the founder of the field of Com-
binatorics on Words as explained in Section 1.1, but he also intro-
duced what is today known under the name of rewriting system
[91]. Named after him such systems acting on strings are sometimes
called semi-Thue systems. Such a system consists basically of a set
of rules, which are applied on a word containing the rule’s left side by
replacing this by the rule’s right side. For example, the rule systems
of generative grammars constitute an application of this type of sys-
tem. We will call them by their most common name, string-rewriting
systems, and now proceed to define them formally.
In our notation we mostly follow Book and Otto [12] and define a

string-rewriting system R on  to be a subset of ∗ × ∗. Its single-
step reduction relation is defined as  →R  iff there exists (ℓ, r) ∈ R
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1 Formal Languages and Combinatorics of Words

such that for some 1, 2 we have  = 1ℓ2 and  = 1r2. We
also write simpler just →, if it is clear which is the underlying rewrit-
ing system. By

∗→ we denote the relation’s reflexive and transitive
closure, which is called the reduction relation or rewrite relation.
A string  is irreducible iff there is no rule (ℓ, r) ∈ R such that ℓ is a

factor of , i.e. no rule can be applied on . The set of all the strings
irreducible with respect to a string-rewriting system R is denoted by
RR(R). An irreducible string  such that 

∗→  is called a normal
form of .
We distinguish several special types of rewrite relations. Such a

relation → is called confluent, iff for all ,1,2 ∈ ∗ always 1
∗←


∗→ 2 implies the existence of some ′ such that 1

∗→ ′
∗← 2.

Here we use 1 ← as a sometimes convenient way of writing →
1.
Local confluence is given, iff for all ,1,2 ∈ ∗ always 1 ←

 → 2 implies the existence of some ′ such that 1
∗→ ′

∗← 2.
A still more local condition is the diamond property, which holds iff
1 ←→2 implies the existence of some ′ such that 1 →′ ←
2. Its relation to general confluence is the following.

Proposition 1.3.1. A string-rewriting system which fulfills the diamond
property is confluent.

Further, → is noetherian (also terminating), iff there is no infinite
sequence 0, 1, . . . such that  → +1 for all  ≥ 0. The relation
is convergent iff it is both confluent and noetherian. For noetherian
systems an analogous result holds for local confluence.

Proposition 1.3.2. A string-rewriting system which is locally confluent
and noetherian is confluent.

Thus the diamond property implies confluence, which in turn im-
plies local confluence. To see that the opposite of the first implication
does not hold we provide a small example without rigorously proving
it.

Example 1.3.3. The system R = {(, ), (b, bb), (bb, bbb)} can
rewrite a word bb in one step to bbb. This result can also be
reached by applying first (, ) via the three steps bb → bb →
bb→ bbb. It is rather easy to see that this system is conflu-
ent, since the first two rules can in this way simulate applications of
the third one. However, R does not fulfill the diamond property as
can be seen from the reduction described.
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By imposing restrictions on the format of the rewriting rules, many
special classes of rewriting systems can be defined. Following Hof-
bauer and Waldmann [39] we will call a rule (ℓ, r) context-free (in-
verse context-free), if |ℓ| ≤ 1 (|r| ≤ 1). The class of rewriting-systems
with only (inverse) context-free rules we denote by CF (InvCF). A
system is monadic, if it is inverse context-free and for all its rewrite
rules (ℓ, r) we have |ℓ| > |r|. The class of monadic systems is denoted
by mon.

1.4 Accepting Languages with
String-Rewriting Systems

The main object of this treatise, idempotency languages, will be gen-
erated by rewrite relations over strings. Therefore it will sometimes
be very convenient to use string-rewriting systems to determine their
location in the Chomsky Hierarchy. For this reason we now introduce
the McNaughton languages, which connect the Chomsky Hierarchy
with string-rewriting systems.
It is a very natural idea to let a string-rewriting system accept a

language in the following way: if a given input is reducible to a spe-
cific normal form, then it is part of the language; otherwise it is not.
A mechanism of this type was first defined by McNaughton et al.
[67], later investigated in more detail by Beaudry et al. [7]. Finally,
Woinowski formalized this in so-called Church-Rosser language sys-
tems [95].
We do not need to use the entire formalism of these systems here

and therefore simply say that a language L ⊆ ∗ is a McNaughton
language of a finite string-rewriting system R, iff there exist an al-
phabet  containing , strings t1, t2 ∈ ( \ )∗ ∩ RR(R) and a letter
Y ∈ ( \ ) ∩ RR(R) such that for every word  ∈ ∗ we have  ∈ L if
and only if t1t2

∗
⇒R Y. This is denoted by L ∈ R-McNL. Note that one

system can accept several languages with different strings t1 and t2.
A class of finite string-rewriting systems S defines its corresponding

McNaughton family of languages S-McNL in the canonical way such
that S-McNL consists of all languages accepted by at least one rewrit-
ing system from the class S. Without restrictions, string-rewriting
systems are computationally complete in this sense.

Theorem 1.4.1 ([7]). The family of all McNaughton languages coin-
cides with the class of recursively enumerable sets.
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1 Formal Languages and Combinatorics of Words

Since we will mainly deal with regular and context-free languages,
the following result is actually of more interest to us.

Theorem 1.4.2 ([7]). Mon-McNL = CF.

The idempotency relations we will use to generate languages are,
of course, also interesting in this context. More exactly speaking, it is
their inverses, which can reduce generated words back to the origin.
These belong to a class of rewrite relations called the length-reducing
ones; here essentially every left side of a rule must be longer than
the corresponding right one. This class lr accepts in the McNaughton
sense the growing context-sensitive languages, which are located
properly between the classes of context-free and context-sensitive
languages. Using confluent systems one obtains only a smaller class
of languages, which is incomparable to the context-free languages.

Theorem 1.4.3 ([7]). lr-McNL = GCSL and lr-McNL \ con-lr-McNL 6=
∅.
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1.5 Variables

1.5 Variables

In what follows we will try to use variables in a systematic way, that
is, the same variable should always denote the same type of entity.
Before starting out, we want to provide this classification for vari-
ables, because it might make reading slightly easier at times.

, b, c, d will not denote variables, but the letters of our alphabets
, j, k, ,m, n integers
,,, z words
p, q words that are in some sense primitive
, y single letters
r, s, t used where there are not enough other lower case letters
L,U, V,W sets of words, i.e. languages
,, N alphabets
A,B,C,D, T non-terminals of grammars
ƒ , g, h, ϕ, δ, ψ mappings

These variables might not always be explicitly quantified, while all
other variables shall not be used without proper quantification.
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2 Languages Generated by
Iterated Idempotencies

Among the many variants of idempotency relations that we will now
introduce, duplication was the one standing at the origin of all the
work presented here. Further it is the main one having a strong
motivation from outside of pure mathematics, namely it was first
introduced in the context of DNA computing. We will briefly sketch
the development from duplication languages to general idempotency
languages in an informal manner, starting out with a survey of all
DNA-inspired string operations. Then the languages generated by
iterated idempotencies are formally defined.
After this, we provide some more background on idempotencies

in the context of formal languages, namely on the Burnside and Br-
zozowski problems. Then we will summarize scattered results from
several lines of research that have already treated idempotency lan-
guages, though under different names. With all these foundations
laid and the scientific context described we then proceed to investi-
gate the regularity of languages and the confluence of relations for
the numerous variants of idempotencies.

2.1 From DNA to Generalized Idempotency

From the very beginning of electrical computers, miniaturization of
their components has been a major aim of research. On this path, we
have come from large condensers to today’s microscopic integrated
circuits on silicon chips, from computers occupying entire buildings
to laptops and smart phones. The famous law of Moore predicts in its
original form that every year the number of components per square
inch on integrated circuits will double [73]; later he corrected the
period of time from one to two years.
And up to now this has roughly held true; actually the number lies

just in between the two predictions, as the number of circuits per
square inch has doubled every 18 months approximately. However,
at some point this miniaturization will come to an end due to physical
limits — as far as we can see from the current state of knowledge,

29



2 Idempotency Languages

electrical computers will always require conducting lines of many
molecules in diameter and even more in length.
On the other hand, our need for computation seems to increase

even faster than our computers’ power; simulations of the Earth’s
climate, processing of astronomical data and many other tasks en-
counter their limits mainly in the capacities of the computers at their
disposal. Thus it is only natural to search for fundamentally new ways
of building computers, possibly using some of the smallest building
blocks of our world that we know of, i.e. atoms, even single electrons,
or at least molecules consisting of not very many atoms.
Besides the use of quantum mechanical effects, biochemical re-

actions seem to be the most promising candidate for this. A great
number of theoretical models have been proposed, which make use
of some special interaction among molecules. The most frequently
employed molecule in this context is DNA. We will now survey the
naturally occurring operations in DNA strands and sketch the way
from these phenomena to the definition of idempotency languages.

2.1.1 String Operations Inspired by DNA

Already in its usual function as carrier of genetic information DNA
acts as a very compact information storage. But beyond this, it ex-
hibits many ways of rearranging itself, often in interaction between
two strands, which one could interpret as a computation. Here we
will not go into any biochemical detail. A reader familiar with DNA at
the level presented in any high school book should be able to follow
the presentation. We want to distinguish two different classes of DNA
rearrangements.
Firstly, there is the Watson-Crick complementarity between the two

strands aligned with each other in DNA. When the double helix is
split into its two strands, these tend to align with complementary
strands again. This was employed in the seminal work of the field by
Adleman [3]. From the ways in which a certain set of strands align,
he concludes whether a coded problem has a solution or not. Since
this is not the path we will follow, we only mention one more way of
using complementarity: Watson-Crick automata work on a tape with
two complementary strands [34].
Secondly, certain changes can occur inside the strands, changing

their sequence of bases. Here we can disregard the double-strand
structure and rather see them as normal words. By iterating this type
of operation, one obtains a language. Thus they are typically used as
generating devices in the context of Formal Languages. Dassow and
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2.1 From DNA to Generalized Idempotency

Mitrana [24] as well as Searls [84] discuss different formal operations
on strings related to the language of nucleic acids. Dassow et al. [27]
give a nice overview of DNA-inspired operations on formal languages.
In these articles, the following operations play a role:

Deletion is the removal of a factor from a word. It has mainly been
investigated together with

Insertion, which is the operation that adds a new factor at an arbi-
trary position in a word. A summary of the power of different variants
of so-called Insertion-Deletion Systems, which employ both opera-
tions, can be found in the book by Păun et al. on DNA Computing
[76]

Inversion is the replacement of a factor by its mirror image. It has
not proven very fruitful for computation so far.

Transposition moves a factor to a new position within the same
word. It does not appear very apt for computation either.

Cross-over is an operation involving two strands. These are cut
and then put back together in a crosswise manner, therefore the
name. Figure 2.1 depicts the exact way, in which this happens.
Strands  and  are cut into the pieces γ/δ and α/β respectively.
Then these are attached cross-wise with each other. The result are

-
�

�
��/ -

δγ



α β

Figure 2.1: A scheme for crossing over

two new strings αδ and γβ, where the arrows run along the first one
of them. Most prominently the so-called Splicing Systems were mo-
tivated by this [37].
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2 Idempotency Languages

Duplication concludes our list. To this operation we will dedicate
its own section, because from it duplication languages were derived;
and these are the chronological origin of all the work presented here.

2.1.2 Duplication

One of the most frequent mutations among the genome rearrange-
ments is gene duplication or the duplication of a segment of a chro-
mosome [70]. This is the DNA operation, which has motivated our re-
search. The definition of gene duplication as given in the MedTerms
Online Medical Dictionary [69] is the following:

Gene duplication: An extra copy of a gene. Gene dupli-
cation is a key mechanism in evolution. Once a gene is
duplicated, the identical genes can undergo changes and
diverge to create two different genes.
. . .
Duplications typically arise from an event termed unequal
crossing-over (recombination) that occurs between mis-
aligned homologous chromosomes during meiosis (germ
cell formation). The chance of this event happening is a
function of the degree of sharing of repetitive elements be-
tween two chromosomes. The recombination products of
such an event are a duplication at the site of the exchange
and a reciprocal deletion.

In the process of duplication, a stretch of DNA is duplicated to pro-
duce two adjacent copies, resulting in a tandem repeat. An interest-
ing property of tandem repeats is that they make it possible to do
“phylogenetic analysis” on a single sequence. This means, for ex-
ample, to try to find the most likely duplication history, which then
provides one with knowledge about possible earlier version of the
gene.
Several mathematical models have been proposed for the produc-

tion of tandem repeats including replication, slippage and unequal
crossing over [59, 94, 83]. These models have been supported by
biological studies [88, 93]. Modeling and simulation by Charlesworth
et al. [18] suggest that very low recombination rates can result in
very large numbers of copies and higher order repeats.
We now illustrate a possibility for obtaining tandem repeats via

crossing over as was depicted in Figure 2.1. If the two strings
involved are the same, then we have the scenario of Figure 2.2.
Following the arrows we read the word  obtained from the orig-

32



2.1 From DNA to Generalized Idempotency
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Figure 2.2: A scheme for duplication

inal , which was cut at the beginning of  in one case and just
after  in the other case.
In Formal Language Theory, this behaviour first inspired so-called

duplication grammars [66], [72]: one starts with a given finite set
of strings and produces new strings by copying specified substrings
to certain places in a string, according to a finite set of duplication
rules. This mechanism is studied from the generative power point of
view. Also the context-free versions of duplication grammars are con-
sidered. Context-free duplication grammars formalize the hypothesis
that duplications appear more or less at random within the genome
in the course of its evolution.
Then Dassow et al. introduced languages generated from a word

by iterated application of the duplication operation in the form of
rewriting rules  →  acting on arbitrary factors [26]. This line of
research was further followed by Wang [92], and later also the re-
striction of the duplicated factors’ length to a maximum or to one
fixed length have been investigated [58], [56], [51], [57]. The main
focus in all this work has been on determining whether the languages
generated are regular or not.

2.1.3 Idempotency Relations and Languages

From an algebraic point of view, the basic feature underlying duplica-
tion is the idempotency  ≡ 2, however read only from left to right.
The first and second power on the left and right hand side respec-
tively are motivated by the duplications observed in DNA strands.
However, from a purely mathematical point of view there is no rea-
son to restrict our attention only to this special case. Starting out
from this thought, we will investigate the languages generated from
one word by iterated application of generalized idempotency rules
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m ≡ n for arbitrary integers m and n; a rule here is the interpreta-
tion of m ≡ n as a string-rewriting rule m → n.
Following the spirit of the definition of duplication languages, we

now proceed to define idempotency relations ./n
m
, which rewrite

repetitive factors of order m to factors of order n. Then the lan-
guages obtained by iterated application of these relations to a single
word are introduced.

Definition 2.1.1. For an alphabet  the relation ./n
m
over ∗ × ∗ is

defined for two natural numbers m and n as

./n
m
 :⇔ ∃z[z ∈ + ∧  = 1zm2 ∧  = 1zn2].

With (./n
m
)∗ we denote the relation’s reflexive and transitive closure

and define the language it generates from a given word  as

./
n
m := { :(./n

m
)∗}.

If the factor whose number of occurrences is changed is bounded in
length or required to have a certain length k, then the corresponding
relations are denoted by ≤k./n

m
and =k./n

m
, formally defined as

≤k./n
m
 :⇔ ∃z[z ∈ + ∧  = 1zm2 ∧  = 1zn2 ∧ |z| ≤ k] and

=k./n
m
 :⇔ ∃z[z ∈ + ∧  = 1zm2 ∧  = 1zn2 ∧ |z| = k].

We denote the languages generated by 
≤k./n

m and 
=k./n

m .

It is worth pointing out that k bounds the length of the factor z in
the definition of bounded idempotency relations, and not the length
of the rule application site zm. The advantage of defining things in
this fashion is that every combination of parameters results in a dis-
tinct relation.
Another point worth noting is that we do not define ./n

m
to be the

relation {(zm, zn) : z ∈ +}. When we use both relations as string-
rewriting systems, their rewrite relations actually turn out to be the
same, namely ./n

m
itself. By our choice of the definition, the rewrit-

ing system and its rewrite relation coincide. Thus we can talk about
properties of both of them, for example confluence and derivability,
while using only one relation. However, in proofs and informal dis-
cussions we will often adopt the point of view that we apply a rule
(zm, zn) rather than (zm, zn), because only in the part consisting
of z actual changes occur. While all results and argumentations hold
for both versions of the definition, the reader might want to be aware
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2.1 From DNA to Generalized Idempotency

of this technicality.
A few simple examples shall give a first taste of how these defini-

tions work. We will not prove their correctness here, though – this
might be a nice exercise to become familiar with the way the idem-
potency rules in question work.

Example 2.1.2. Over two letters, duplications can generate just about
any factor in any place as the example (b)./

2
1 = {, b}∗b{, b}∗

shows. In the case of (bcbcbb)=2./4
2
= (bcbc)+bb the rules can

be applied only on square factors, and in bcbcbb there are only
two, which overlap and are even conjugates; thus only one of them
needs to be considered. The language generated consists simply of
the words reached by iterated catenation of this factor.
For length-reducing rules the languages generated are,

of course, finite, like in the case of (bcbbcbc)./
1
2 =

{bc, bcbc, bcbbc, bcbbcbc}; here in a first step either
the prefix (bcb)2 or the suffix (bc)2 can be reduced, only the former
case results in a word with another square, which can be reduced
to bc. This example already shows that one word can in general
be reduced to more than one normal form, i.e. the reduction is not
converging towards a unique endpoint.

Already these few examples show that the languages generated by
idempotency relations are very strongly connected to repetitions in
their words. Depending on the parametersm and n, these repetitions
are introduced, expanded, shortened or deleted by the rules. This
connection explains, why the results from the field of avoidability
presented in Section 1.1 build such an important foundation for our
investigations.
Of course, our definition provides us with an infinite class of rela-

tions. But in the context of our investigations, big classes of such
relations exhibit similar behaviour most of the time. We now present
a first, rough classification according to the differences in nature of
idempotency relations ./n

m
for different values of the parameters m

and n. An intuitive characterization of the nature of the relations
described is given with each class.

• ./1
0
is the insertion of arbitrary words at arbitrary places.

• ./n
0
for n ≥ 2 is the insertion of words with some internal struc-

ture at arbitrary places.

• ./2
1
is the duplication of arbitrary factors of a word.
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• ./n
1
for n ≥ 3 is the replacement of arbitrary factors of a word by

higher powers of these factors.

• ./n
m
for 2 ≤m< n increases the powers of factors already occur-

ring in powers of two or higher; here rules can be applied only
at very restricted sites.

• ./n
m
for m ≥ n do not increase the length of the underlying word

and therefore result always in finite languages.

We will see that most of the results will treat not one single relation
but one or more of these classes.
Before proceeding to present the results of our research, we will

place the object of our work within Formal Language Theory and re-
lated fields of investigation.

2.2 Idempotencies and Related Languages

In presenting the background our investigations are founded on, we
start out with the Burnside Problem, in which idempotencies play a
central role. While this problem still deals with groups in general,
the non-counting classes already represent a pure formal language
problem. After these we mention stuttering language, which are al-
most equal to some of our idempotency languages. Finally we will
present some results, which actually already treat idempotency lan-
guages, just under different names; these are duplication languages,
languages generated by copy systems, and insertion and deletion
closures.

2.2.1 The Burnside Problem

Idempotencies have already received a great deal of interest through
a problem stated by Burnside in 1902 [16]: Is every group, which
satisfies the identity r = 1 and has a finite set of generators, finite?
To understand this questions, we take a short excursion into algebra.
A group is a structure [A, ◦] consisting of a set A together with a
binary operation ◦ : A × A → A over this set; this operation we will
call multiplication. It is associative, and there is a neutral element 1
which fulfills 1 ◦  =  ◦ 1 = 1 for all  ∈ A. Further, for every  ∈ A
there exists an inverse element y ∈ A such that  ◦ y = 1. Thus a
group satisfying r = 1 is one where the (r − 1)-fold multiplication of
any element with itself produces the neutral element.
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2.2 Idempotencies and Related Languages

A set B of generators of a group is a subset of A such that any
element in A can be obtained by a finite number of multiplications
of elements from B. As an example, all words can be generated by
catenation of elements of the alphabet; note, however, that a set
of words together with catenation does not form a group but only
a monoid, because no inverses exist other than for the empty word.
With this, all the concepts appearing in the statement of the Burnside
problem are explained.
Burnside himself already gave a positive answer for r ∈ {1,2,3}.

Since then many cases have been solved, others remain open. The
first negative result was stated by Adian and Novikov in 1968 for
all r ≥ 4381 [2]. Later this was improved by Adian to all odd r ≥
665, for which the group generated is infinite [1]. In the 1980s and
1990s interest in the topic flared up again, a nice overview of the
history and the results obtained in that period, when the problem
was actually extended to semigroups, has been given by Dershowitz
[28]. His exposition also includes the non-counting classes, which
are the subject of the next section.

2.2.2 Non-Counting Classes

Another problem that received a great deal of interest is the reg-
ularity of non-counting classes, which constitutes one of the most
famous problems concerning regular languages and has in part been
open for over 30 years. A nice overview was published by Brzozowski
[14], after whom the problem was also named Brzozowski’s Problem.
Recall from Section 1.2.3 that a language L is called non-counting,

iff there is an integer  ≥ 0 such that for every  ∈ + and , z ∈ ∗,
we have z ∈ L iff +1z ∈ L. Derived from this was the question
whether every equivalence class of the smallest congruence on ∗

satisfying  ∼ +1 is regular.
An important result on the topic is the Theorem of Green and Rees

[35], which treats the case where  = 1. It states that the relations
 ∼  for a finite alphabet always have a finite number of equiv-
alence classes. Stated in terms of our idempotency relations, this
theorem has the following form.

Theorem 2.2.1. The relation ./2
1
∪ ./1

2
over a finite alphabet has a

finite number of equivalence classes.

Thus there is a finite set of words W such that any word in + can
be reached from a word in W by duplicating and unduplicating fac-
tors. In the form presented in Lothaire’s book on combinatorics of
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2 Idempotency Languages

words [61], the Theorem of Green and Rees even gives the number
of equivalence classes as a function of the size of the alphabet. The
minimal sizes of these sets increase very rapidly for bigger alpha-
bets:

Alphabet size: 0 1 2 3 4 . . .
Minimal size of W: 1 2 7 160 332381 . . .

This is contrasted by the fact that in general every square-free
word defines a separate equivalence class for m ≡ n where
m,n ≥ 2. Thus over at least three letters these relations have an
infinite number of equivalence classes.
Later, de Luca and Varricchio [64] proved that for all  ≥ 5 the

relation corresponding to  ≡ +1 has a finite number of equivalence
classes. This leaves open only the cases 2, 3, and 4.
At about the same time, the problem was extended from  ∼ +1

to m ∼ m+n under the name of free Burnside semigroups, which are
already very similar to our idempotency languages. A survey of the
results obtained in this line of research until 2001 has been published
by do Lago and Simon [29].

2.2.3 Stuttering Languages

Another field, where we find notions related to our idempotency lan-
guages is concurrency theory, namely where linear temporal logic is
used to specify concurrent programs. Originally, here one deals with
the repetition of letters in a word, and with languages containing any
word pumped up by repeating letters from another word contained
in them; these describe processes, which differ in at most the num-
ber of times a state may adjacently repeat. The word cccb would
be such a pumped version of cb. This is of interest in linear tem-
poral logic, because certain classes of formulas cannot distinguish
between words equivalent in this sense.
In natural (spoken) language this phenomenon is known as stutter-

ing. Therefore the name of stutter-closure of a language is used, for
example, by Peled et al. [77], who study the closure of ω-languages
under this operation. In our notation the upward stutter-closure of a
word  would be 

=1./2
1 .

But not only this rather simple case plays a role. Kucera and Stre-
jcek generalize letter-stuttering to subword-stuttering, where factors
can be repeated to an arbitrary degree [49] – they use the term sub-
word for what we call factor. What they use to distinguish the ex-
pressiveness of different types of formulas would be subsets of the
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languages ./
m+1
m in our context. Since the languages are only used

to obtain results very different in nature to our interests, we will not
go into any more detail on this topic.

2.2.4 Known Results About Special Cases

As mentioned already in Section 2.1, the most intensively investi-
gated case of idempotency-generated languages so far seems to be
the duplication closure, i.e. the case of languages generated by rules
 → 2. First off we present two regular cases. The first one stems
from the initial article, where duplication languages were introduced.

Proposition 2.2.2 ([26]). For every word  ∈ {, b}∗ and the lan-
guage ./

2
1 is regular.

Also, uniformly bounding the length of duplications results in regu-
lar languages, independently of the size of the alphabet.

Proposition 2.2.3 ([56]). For every word  and integer k ≥ 0 the
language 

=k./2
1 is regular.

Over an alphabet of more than two letters we can get beyond reg-
ularity in the general and even in most of the length-bounded cases.

Proposition 2.2.4 ([58]). For every integer k ≥ 4 the language
(bc)

≤k./2
1 is not regular.

These cases of non-regularity were shown by refinements in the
proof techniques used for obtaining the chronologically first result of
this kind.

Proposition 2.2.5 ([92]). The language (bc)./
2
1 is not regular.

These results raise the question about an upper bound for the com-
plexity of the languages generated by bounded and general duplica-
tion. In the bounded case, context-freeness of the languages gener-
ated has been proved; in the general case it remains an open prob-
lem.

Proposition 2.2.6 ([58]). For every every word  and integer k ≥ 0

the language 
≤k./2

1 is context-free.

It must be mentioned here that some of these results were al-
ready obtained earlier in investigations dealing with so called copy
systems. Obviously the work on duplication has so far been done
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2 Idempotency Languages

without any knowledge of this field. These copy systems are actually
defined in exactly the same way as our idempotency languages for
./2

1
, only the symbol for the relation differs. Ehrenfeucht and Rozen-

berg wrote the initial article on copy systems [32] and proved a result
implying Proposition 2.2.5. In a following article [13], Bovet and Var-
ricchio did the same for Proposition 2.2.2.
Another special case of idempotency languages is that of arbitrary

insertion or deletion of factors, which correspond to the relations ./1
0

and ./0
1
respectively. These have been investigated under the names

of 1-insertion and deletion. A compilation of the results obtained can
be found in the book by Ito [45]. There, n-insertion of a word  into a
word  for a positive integer n is defined as

.[n] := {1122 . . . nnn+1 :  = 12 . . . n∧ = 12 . . . nn+1}.

This is extended to languages U and V in the following way:

U .[n] V :=
⋃

∈U,∈V
 .[n] .

Then it is proved that for regular U and V also U .[n] V is always
regular. Since obviously ∗ .[1] {} = ./

1
0 we obtain the following

result.

Proposition 2.2.7. For every every word  the language ./
1
0 is regu-

lar.

The deletion of one language from another is defined via the dele-
tion of words  −→  := {12 :  = 12} such that U −→ V :=
⋃

∈U,∈V  −→ . From the result that the deletion of a regular lan-
guage from a regular language is again regular we can derive the
following result in our context.

Proposition 2.2.8. For every regular language L the language { :
./0

1
∧ ∈ L is regular.

This does not imply directly the regularity of ./
0
1 , but will be useful

later on in its proof.
Finally, we also want to mention that in the field of DNA comput-

ing similar mechanisms have been investigated under the name of
Insertion-Deletion system [76]. Using only insertion or only deletion
also here amounts to applying an idempotency rule. However, while
some variants without any deletion operations were considered, al-
ways context-sensitive insertion has been in the focus of attention.
Therefore it seems that all existing results cannot help in our context.
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2.3 General Observations

It has already been stated that one of our main objectives will be find-
ing out how complex languages generated by idempotency relations
are with respect to the classes of the Chomsky Hierarchy and related
language classes. We start by giving a very general upper bound for
this complexity, which applies in all the length-bounded cases.

Proposition 2.3.1. For all integers k,m,n ≥ 0, every word , and
a condition c ∈ {≤ k,= k} the language 

c./n
m is always growing

context-sensitive.

Proof. For m ≥ n all languages are finite. The other cases are proven
via the McNaughton characterization of languages. Note that all of
the relations are strictly length-increasing for n > m. Therefore their
inverse relations are strictly length-decreasing. Take any such re-
lation as a string-rewriting system and add the rule (,Y) for some
symbol Y that is not in the alphabet of. With empty strings t1 and t2
from the definition of McNaughton languages this system obviously
accepts 

c./n
m . Thus this language is in lr-McNL which is equal to the

class of growing context-sensitive languages by Theorem 1.4.3.

Since the class of growing context-sensitive languages is not so
well-known, we mention here a few facts about them, which have
been established. In contrast to the case of general context-sensitive
languages, the membership problem is decidable in polynomial time
for this class [23]. Further, it is closed under union, catenation, iter-
ation, intersection with regular languages, λ-free and inverse homo-
morphisms; thus the growing context-sensitive languages form an
abstract family of languages [15].
The question is, of course, how tight this upper bound is. In many

cases the languages generated are much simpler, namely regular.
However, we will see that there are also cases, where it is unknown
whether they are context-free or not. There the upper bound for their
complexity provided here is actually the best one known.
We also want to state a relation with a class of languages men-

tioned in Section 2.2.2, the non-counting languages. Their definition
exhibits some obvious parallels to that of the relation ./m+1

m
. Clearly

m is such a constant that yz ∈./
m+1
m iff y+1z ∈./

m+1
m . This allows

us to directly conclude the following.

Proposition 2.3.2. For every m ≥ 0 and every word  the language
./

m+1
m is non-counting.
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2.4 Uniformly Bounded Idempotency

The first variant of idempotency-generated languages we will deal
with is the one where the idempotencies are restricted most: all
words defining idempotency rules must have the same length. This
implies serious limitations for the languages generated; for ex-
ample, their words can only be of certain lengths: the language
(bb)

=2./5
2 = bb((b)3)∗, for example, consists only of words

of lengths 5 + 6 for integers . Therefore it does not come as a sur-
prise that we will find confluence and regularity in the majority of
cases.

2.4.1 Confluence

Before we actually investigate confluence, we will now state a useful
property of uniformly bounded idempotency languages. It simplifies
the construction of regular expressions for such a language and thus
will be used implicitly further down.

Lemma 2.4.1. Let k,m,n > 0 with n ≥ m and let the word  ∈
∗ have period k. Then 

=k./n
m = [1 . . . || − k]([|| − k +

1 . . . ||]n−m)+.

Proof. We prove the claim by induction on the number of rewrite rules
that have been applied to obtain a word in 

=k./n
m . Clearly the induc-

tion basis  ∈ [1 . . . || − k]([|| − k + 1 . . . ||]n−m)+ holds. So
let 1

=k./n
m
2 with 1 ∈[1 . . . ||−k]([||−k+1 . . . ||]n−m)+.

Then 2 can be obtained from 1 by application of one idempo-
tency rule on a factor m of 1 with || = k. So  has period k.
Therefore the period k of the word 1 is preserved, and of course
the last k letters of 1 also remain unchanged. Thus we have
2 ∈[1 . . . || − k]([|| − k+1 . . . ||]n−m)+. Together with trivial
length considerations for the exponent (n−m) this suffices to prove
the claim.

Now we will see that all length-increasing uniformly bounded idem-
potency relations are confluent.

Lemma 2.4.2. For k,m,n ≥ 0 with n ≥ m the relation =k./n
m

is con-
fluent.

Proof. It is known that the diamond property implies confluence [6].
Therefore it suffices to show that this property 1 ←  → 2 ⇒
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∃(1 →  ← 2) holds for the relation =k./n
m
. So let two words

1 and 2 be direct successors of another word .
If the factors in , where the rules are applied, do not overlap, then

obviously in both cases the respectively other rule can be applied
afterwards and one arrives at a common . So let two application
sites rm and sm overlap in . Without restriction of generality let rm

occur first from the left, and call ′ the factor from the start of rm till
the end of sm such that  = 1′2 for some 1, 2 ∈ ∗.
Now we can interpret the application of rm → rn as the insertion

of rn−m just in front of ′; equally sm → sn amounts to the insertion
of sn−m just after ′. Since application of these rules leaves ′ un-
changed, the two derivations

1
′2 → 1r

n−m′2 → 1r
n−m′sn−m2

and
1

′2 → 1
′sn−m2 → 1r

n−m′sn−m2

are possible, and the fact that they result in the same word concludes
our proof.

So all the length-increasing variants are confluent. For length-
reducing rules, however, this is true only in some cases.

Lemma 2.4.3. For k ≥ 2 the relation =k./0
1
is not confluent.

Proof. Let  be a word of length k + 1. Then the parameters of the
relation allow the application of a rewrite rule exactly on two sites:
’s prefix and suffix of length k; these will leave the last, respectively
the first letter of  as irreducible remainder, and these are in general
not equal.

Lemma 2.4.4. For k ≥ 2, m > n, and n ≥ 1 the relation =k./n
m

is
confluent.

Proof. As in the proof of Lemma 2.4.2 it suffices to show that the
diamond property holds, i.e. 1 ←  → 2 ⇒ ∃(1 →  ← 2) for
the relation =k./n

m
.

Sincem> n, rewrite rules reduce repetitive factors to ones of lower
repetitiveness but at least one copy of the repeated word of length
k remains, because n ≥ 1. Therefore the diamond property holds
obviously, if the application sites of two rewrite rules do not overlap
by more than k symbols.
If, on the other hand, there are two powers of order m overlapping

in more than k symbols, then the entire sequence has period k, and
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thus the application of either rule results in the same word, thus
already 1 =2.

Now we are able to fully characterize the conditions under which
uniformly bounded idempotency relations are confluent. Lemmata
2.4.2, 2.4.3, and 2.4.4 leave open only the cases where k = 1 and
k = 0. But for these cases confluence is obvious for any m and n.

Proposition 2.4.5. The relation =k./n
m

is confluent except for the case
where k ≥ 2, m = 1, and n = 0.

2.4.2 Regularity

If we deal with words over an alphabet of only one letter, then, as
one might expect, the strict restriction to uniform length of the rules
results in the languages generated being rather simple, namely ul-
timately periodic and therefore regular. This result is implied by the
later one on two-letters; we still prove it explicitly, because the proof
is easier in this case and it provides us with a concrete expression for
the language generated.

Proposition 2.4.6. Over a one-letter alphabet {} for every nonempty
word  and integers k,m,n ≥ 0 the language 

=k./n
m is regular.

Proof. If m ≥ n, then the language generated is finite and thus also
regular. For m< n there exists only one possible rewrite rule, namely
(k)m → (k)n, and with every application exactly k · (n −m) copies
of the letter  are inserted. The place of application does not matter
since catenation is commutative over just one letter. Thus 

=k./n
m =

(k·(n−m))∗.

While in most cases also for bigger alphabets the languages gen-
erated remain regular, the proofs of this will be somewhat more in-
volved. For the rest of this section we will assume an alphabet 
containing at least two letters. It is still rather easy to see that in-
sertion of arbitrary words generates only regular languages, see also
Proposition 2.2.7, where, however, unrestricted insertion is treated.

Proposition 2.4.7. For every word  and an integer k ≥ 0 the lan-
guage 

=k./1
0 is regular.

Proof. In this case, at any point arbitrary words from the set
k can be inserted into the original word. Thus the lan-
guage generated is described by the regular expression ϕ :=
(k)∗[1](k)∗[2](k)∗ . . . (k)∗[||](k)∗.
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The only consideration necessary to see this is the following: let
some word  = 12 be inserted, and later a second one  between
the two factors 1 and 2; choose the factorization 12 of  for
which |11| = |22| = k. Then the same word would have been
reached by first inserting 11, and then 22 just behind it. Thus
insertions of one factor inside another need not be considered and
catenation of factors from n in the way described in ϕ suffices to
generate the entire language 

=k./1
0 .

When n becomes greater than 1, instead of arbitrary words we
insert words, which already have some internal structure, namely
they are squares, cubes etc., i.e. they are always non-primitive. Then
the insertion cannot be replaced by simple catenation and we obtain
also non-regular languages.

Example 2.4.8. Let L ⊂ {, b}∗ be the language generated from λ

by insertion of squares of words of length 2, i.e. L = λ
=2./2

0 . Then we
show that L ∩ (bb)+(bb)+ = {(bb)n(bb)n : n ≥ 0}, and this
language is clearly not regular.
Every word in {(bb)n(bb)n : n ≥ 0} can be generated from λ

by first putting b4, then 4 in its center, and so on.
On the other hand, every word in (bb)+(bb)+ and therefore

also every word in L∩ (bb)+(bb)+ contains only one square of a
word of length 2, namely the 4 in the center. Removing it, b4 forms
a unique such square. Thus a reduction to λ is possible only if the
numbers of bb and bb correspond, and this shows that all words
in this intersection must belong to the set {(bb)n(bb)n : n ≥ 0}.

This example does not represent some special case, rather non-
regularity always holds over an alphabet of at least two letters, more
precisely speaking the languages generated are not even linear.

Proposition 2.4.9. For every word  and integers k ≥ 2, and n ≥ 2

the language 
=k./n

0 is not linear but context-free.

Proof. Analogously to the language obtained by intersection in Exam-
ple 2.4.8 we can always filter out a non-linear component over two
letters. So for an arbitrary relation =k./n

0
let us consider the language

λ
=k./n

0 ∩ (b2nk−1)+(bnk−2)+(bnk−1)+(bnk−1)+

obtained by intersection of λ
=k./n

0 with a regular language. This results
in the non-linear

L = {(b2nk−1)(bnk−2)(bnk−1)j(bnk−1)j : , j ≥ 0}.
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The reasoning for seeing this is the same as in Example 2.4.8. Clearly
L is a subset of the intersection by derivations

λ→ bnk → b2nkbnk−2 → b2nk−1bnkbnk−2 → · · ·

for the first component, and by an analogous derivation for the sec-
ond component.
To see that the language obtained by intersection is contained in L,

we observe that all words in (b2nk−1)+(bnk−2)+(bnk−1)+(bnk−1)+

are in the intersection, iff they have λ as a normal form under
the relation =k ./0

n
. For obtaining the normal form of any word in

(b2nk−1)+(bnk−2)+(bnk−1)+(bnk−1)+ the only applicable rule is
nk → λ, which is applicable on two sites. Application at either site
creates bnk there and applying bnk → λ takes us back into the origi-
nal language. At no stage any rule transgressing the border between
the two first and two last iterations is possible. So the reduction
goes independently in both components, and the word can only be
reduced to λ if the exponents are as in L.
Now we show the inclusion of languages 

=k./n
0 in CF by sketch-

ing the construction of a context-free grammar generating 
=k./n

0 for
some word  and non-negative integers k and n. It has only two non-
terminals S and T. For the start symbol S, there is the unique rule
(S, T[1]T[2]T . . . T[||]T). The rest of rules consists of the set
{(T, T(1T2T . . . TkT)n : 1, 2, . . . , k ∈ )} and the deleting rule
(T, λ). It should be rather obvious that this grammar generates ex-
actly the desired language with the ubiquitous T permitting insertion
at any position, while it can be deleted wherever no further insertions
occur.

Proposition 2.4.10. For every nonempty word , integers k, n ≥ 0,
and m ≥ 1 the language 

=k./n
m is regular.

Proof. Because different parameters can result in a quite different
behaviour of the relations =k./n

m
, we distinguish several cases.

Case 1: m ≥ 1 and n ≤m. The relation is length-reducing or the
identity, the resulting language is obviously finite and therefore
regular.

Case 2: n = 2,m = 1. This is the special case of uniformly bounded
duplication and is therefore covered by Proposition 2.2.3.
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Case 3: n > 2,m = 1. The crucial fact to note is that the applica-
tions of the idempotency rules can be done strictly from left to right;
i.e. it can be done in a way such that at most the last k positions
produced in the last step are affected in the following one. To see
this it suffices to recall that according to Lemma 2.4.5 the relation is
confluent here, and as shown in the lemma’s proof it even fulfills the
diamond property.

This implies that every word  ∈ 
=k./n

m can be constructed by suc-
cessive applications of idempotency rules in such a way that at any
stage it can be factored as rst, where rs is already a prefix of , s will
be replaced by sn in the next step, and st is a suffix of the original
word . This tells us that for any prefix ′ of a word in 

=k./n
m there

exists a word , which is a suffix of  such that ′ ∈ 
=k./n

m . It re-
mains to show that this allows us to give a bound for the number of
equivalence classes of the syntactic congruence ∼ for the language

=k./n

m .
All words  such that there exists no  such that  ∈ 

=k./n
m con-

stitute one such class C. Now let such a factor  exist, i.e.  is a
prefix of a word in the language. As shown above, this word can be
constructed from left to right.
This means that there exists a word  fulfilling the above property,

which is at the same time a suffix of  except for maybe its first
(n−m)k−1 letters produced in the last application of an idempotency
rule. Of course, there are only finitely many suffixes of  and only
finitely many words of length (n−m)k− 1. As the possible right con-
texts of all equivalence classes of ∼ (except for C) have to contain at
least one such suffix, their number is bounded exponentially by the
number of suffixes of  and the number (n−m)k−1, to be more ex-
act, ||||+(n−m)k−1 is a bound. Therefore the syntactical congruence
is of finite index and by Theorem 1.2.5 the language 

=k./n
m is regular.

Case 4: n > m,m = 2. First let us look at the rules 2 → n as in-
sertions of n−2 between the two original occurrences of . This il-
lustrates that idempotency rules affecting factors overlapping by no
more than k symbols can be looked at independently. Further, note
that due to the fixed length of such words , every border between
letters in the original word  can be center of at most one relevant
factor .
Now we construct the regular expression R from  as follows. Go-

ing from left to right, every square  with || = k is replaced by
(n−2)∗. Clearly the language described by R is a subset of 

=k./n
m .
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However, two squares of length 2k overlapping in more than k letters
might allow applications of idempotency rules in ways not described
by this expression.
To see that this is not the case, we first notice the fact that two

such factors  and  overlapping in more than k letters imply
that  and  are conjugates, because  is an internal factor of
. This means that the entire factor of  spanning these two
squares has period k. Therefore it does not matter, whether n−2

or n−2 is inserted at the respective place, the result is the same,
see also Lemma 2.4.1. Thus this case is described by R, too, and
consequently exactly the language 

=k./n
m is described and therefore

regular.

Case 5: n > m,m > 2. Essentially the same reasoning as in Case 4
applies.

2.5 Bounded Idempotency

Compared to uniformly bounded rules, general length-bounded rules
allow many more possibilities, namely to have the application site
for one inside the site for another rule. This feature makes the lan-
guages generated non-regular in many cases, and also confluence is
not always given.

2.5.1 Confluence

In the case of bounded insertion, we can establish confluence rather
easily.

Proposition 2.5.1. For all k, n ≥ 1 the relation ≤k./n
0
is confluent.

Proof. Let , ∈ 
≤k./n

0 for a word . This means that 
and  can both be obtained from  by inserting n-th pow-
ers of words of length no greater than k between the let-
ters of . So, marking the original letters of  by under-
lining them, we have  = 1[1]2[2] . . . ||[||]||+1
and  = 1[1]2[2] . . . ||[||]|| for some words
1, 2 . . . ||+1, 1, 2, . . . ||+1 ∈ ∗. Now clearly

11[1]22[2] . . . ||||[||]||+1||+1 ∈ 
≤k./n

0 ∩ 
≤k./n

0 ,
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2.5 Bounded Idempotency

which proves the confluence of ≤k./n
0
.

For ≤k ./n
1
confluence depends on the length bound, as the following

two propositions will show.

Proposition 2.5.2. For all k < 3 and n ≥ 1 the relation ≤k./n
1
is conflu-

ent.

Proof. We show that the diamond property holds, i.e. 1 ←  →
2 ⇒ ∃(1 →  ← 2). For k < 2 this is obvious. The same is true
for k = 2 if the two application sites of the rules do not overlap. The
few possible cases for k = 2 can now be checked in an exhaustive
manner to have the diamond property.
For n ≥ 2 the derivations bc → (b)nc → (b)nc(bc)n−1 ←

(bc)n−1 ← bc treats the case of two rules with left sides of length
two. If they are of length one and two, then and b → bn →
(b)nbn−1 ← (b)n ← b proves the diamond property. Of course,
if not all of the letters involved are different, then things become
even easier.

The argumentation shows that, informally speaking, for non-
confluence it has to be possible to have the application site of one
rule properly inside the one of the other. The shortest possible
lengths for this are one and three, and these already suffice, how-
ever only over at least three letters.

Proposition 2.5.3. For all k ≥ 3 and n ≥ 2 the relation ≤k./n
1
is not

confluent over an alphabet of three or more letters.

Proof. From the word bk−2c one can obtain in one step  = bk+n−3c
and also  = (bk−2c)n. Notice that  contains an occurrence of 
after one of c, and thus all words obtained by application of further
rules will do so.
At the same time in  the unique occurrences of  and c are sep-

arated by at least k − 1 letters b. Thus no application of a rule
from ≤k./n

1
can include as well  as c. Since this central block of

b is conserved, no word with an  after a c can be reached. Thus

≤k./n

1 ∩ 
≤k./n

1 = ∅, which proves our claim.

Over a smaller alphabet, also the duplication corresponding to the
parameters from Proposition 2.5.3 is still confluent.

Proposition 2.5.4. Over a two-letter alphabet, the relation ≤k./2
1
is

confluent for all k ≥ 1.
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2 Idempotency Languages

Proof. The cases where k = 1 are obvious. So let us suppose that we
have 

∗← 
∗→ . Notice that all words in 

≤k./2
1 start and end with

the same letters, let them be  and b respectively. Then a charac-
teristic feature of every such word is its number of changes from 
to b. Let this number be  for  and j for . Unless they are equal,
without restriction of generality let  be the greater number. We now
start from the word  and select any occurrence of b in it. This we
duplicate − j times, the resulting word ′ now has  changes from 
to b, just as .
In a next step we look at  and ′ and compare the length of the

initial blocks of . In the shorter one we duplicate the initial  so
often, that the block of  becomes as long as the other one. Then the
same is done for the first block of b and so on for all blocks. Clearly
the resulting word is in 

≤k./2
1 ∩ 

≤k./2
1 , which proves the confluence of

≤k./2
1
. Note that we have used only rules, where k = 1 or k = 2.

To show the confluence of ≤k./n
1
for greater n, the construction

method used for n = 2 cannot be applied. Unlike in the construc-
tion in the proof of Proposition 2.5.4, two blocks of one letter cannot
be made to have the same length in general as the following lemma
shows.

Lemma 2.5.5. Let  ∈ {, b}∗, k ≥ 1 and n > 2. For all words  ∈

≤k./n

1 the number of changes from  to b, the number of changes
from b to , and the numbers || and ||b are constant modulo (n−
1).

Proof. If the site of a rule application contains no change from  to b,
then the number of such changes for the entire word stays the same.
If, on the other hand, it contains  changes, they will be replaced by
n ·  ones, the number increases by (n− 1) · . Similarly, a rule whose
left side contains  letters  replaces them by n ·  new ones, also here
the number increases by (n− 1) · .

Nonetheless we conjecture that these relations are still confluent,
but some different reasoning will be necessary.

Proposition 2.5.6. For all k ≥ 3, m ≥ 2, k > m and n > m the relation
≤k./n

m
is not confluent.

Proof. We start from the word (mb)m. The entire word is the left side
of a rule resulting in (mb)n, which has more thanm letters b. On the
other hand the rule m → n can be applied to any of the blocks m;
if this is done to any of these blocks except the first one, it is quite
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2.5 Bounded Idempotency

clear that after this it will only be possible to apply rules producing
more . Thus the number of letters b will always remain lower than
n, which suffices to prove our claim.

2.5.2 Regularity

As for confluence, also the question of regularity of the languages
generated is much more interesting with just a general length bound
compared to the uniform one. The one-letter case remains simple,
though.

Proposition 2.5.7. Over a one-letter alphabet {} for every nonempty
word  and integers k,m,n ≥ 0 the language 

≤k./n
m is regular.

Proof. With a reasoning very much along the lines of the proof of
Proposition 2.4.6 we can see that for m< n


≤k./n

m =((n−m))∗(2·(n−m))∗ · · · (k·(n−m))∗.

For a greater alphabet the language generated is also regular, if
we look at the insertion of words with no inner structure n for n ≥ 2.

Proposition 2.5.8. For every word  and integer k ≥ 0 the language

≤k./1

0 is regular, and further 
≤k./1

0 =
≤1./1

0 for k ≥ 1.

Proof. The case of k = 0 is trivial. For greater k always insertions
of length one, i.e. of single letters are possible at any position, and
between the letters of the original word any word can be generated.
Thus any word in 

≤k./1
0 can be generated by insertions of length

only one and the resulting language consists exactly of all the words
having  as a scattered subword — a condition that can easily be
checked by a finite automaton.

Along quite similar lines as originally used by Wang for unbounded
duplication [92] we will now prove that for many relations the lan-
guages generated are not regular.

Proposition 2.5.9. Over an alphabet of three letters, for every word
 and integers k ≥ 1 and n ≥ 2 the language 

≤k./n
0 is not regular.

Proof. We prove that λ
≤k./n

0 is not regular. First we show that for ev-
ery square-free word  there exists a word  such that  ∈ λ

≤k./n
0 .

It is rather straight-forward to construct  in a way that produces
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one letter of  in every step, while  will consist of all the letters pro-
duced, which do not form part of . We start with λ and first insert
[1]n, then after the first letter of  insert [2]n etc. In this  takes
up all the letters not needed for , but which are produced by the
rules. By this method we obtain an upper bound on the length of the
smallest such , namely || ≤ ||(n−1), because exactly n−1 letters
of  are produced in every step.
Now we establish a lower bound on the length of words  such that

 ∈ λ
≤k./n

0 . Since  is square-free, every insertion can produce at
most 2k − 1 symbols of it, otherwise there would be a square in . It
is also impossible for letters after the (n − 1)-st position to become
part of  later by insertions in front of them: then these would leave
a square within . So still in the optimal case of always producing
2k−1 letters of  in every step, we have that || ≥ ||

2k−1 ((n−2)k+1).
Summarizing, for every square-free word  there exists a word

 such that  ∈ λ
≤k./n

0 , and for the shortest such  we have
||

2k−1 ((n − 2)k + 1) ≤ || ≤ ||(n − 1), where the lower bound is op-
timal. Now, over three letters there exists an infinite square-free
word. Let 1, 2, 3 . . . be a sequence of prefixes of such a word with
|+1 |
2k−1 ((n − 2)k + 1) > ||(n − 1) and let  be the shortest word such

that  ∈ λ
≤k./n

0 for all  ≥ 1. Then clearly j 6∈ λ
≤k./n

0 for all j > .
This means that the equivalence classes of the  in the syntactical
congruence of λ

≤k./n
0are pairwise different, so there is an infinite num-

ber of such classes. According to Theorem 1.2.5 the language λ
≤k./n

0

cannot be regular.

Before we treat the cases, where m = 1, we compile some proper-
ties of the underlying relations, which will then allow us to prove the
non-regularity of several cases.

Lemma 2.5.10. Over a two-letter alphabet {, b} for every 2+-free
word  starting with b and every integer n > 1 there exists a word
, such that  ∈ (b)

≤3./n
1 and || ≤ (3(n− 1) + 2)(|| − 2).

Proof.  being 2+-free implies that there is no factor  for any
letter  ∈ . Thus the alphabet’s containing only two elements guar-
antees that after at most 2 positions in  letters repeat, i.e. for every
position in  its letter is repeated at most three positions later. Thus
we can construct a word having  as a prefix in the following way:
starting from b, always one letter more of  is constructed per step.
We take the shortest suffix z of the already constructed part of 
starting with the next letter needed. On it we apply the rule z → zn
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2.5 Bounded Idempotency

putting the required letter in the position. As exposed above, the
maximum length of z is 3 and thus all rules belong to ≤3./n

1
. This pro-

cess takes exactly || − 2 steps, and in each one at most 3(n− 1) + 2
additional letters are introduced, which proves the length bound on
.

However, the length of the word  in Lemma 2.5.10, i.e. in some
sense the amount of garbage produced during the generation of ,
cannot be reduced to arbitrarily small numbers.

Lemma 2.5.11. Over a two-letter alphabet {, b} for every 2+-free
word  starting with b and every integer n ≥ 3 there exists no word
, such that  ∈ (b)

≤3./n
1 and || ≤ ||−22k .

Proof.  is obtained from b by the application of rules z→ zn. Since
 is 2+-free and n ≥ 3 every such rule must produce at least one
additional symbol outside of , therefore contributing to . At the
same time each rule produces at most 2k letters of  such that at
least ||−22k rules must be applied. Therefore there are at least ||−22k
symbols in .

Lemma 2.5.12. Over a three-letter alphabet {, b, c} for every
square-free word  starting with bc and every integer n > 1 there
exists a word , such that  ∈ (bc)

≤4./n
1 , and for the shortest such

word we have ||−37 ≤ || ≤ (4(n− 1) + 3)(|| − 3).

Proof.  can be constructed starting from bc in a way very sim-
ilar to that of the proof of Lemma 2.5.10. Only here between two
consecutive occurrences of the same letter in  there can be three
other letters, because 3 is the length of the longest square-free word
over two letters. Therefore the longest z such that rules z → zn are
applied is 4 letters long, and that gives us the upper bound on the
length of . The lower bound is obtained in a manner analogous to
the proof of Lemma 2.5.11.

Proposition 2.5.13. Over a two-letter alphabet for every word  and
integers k, n ≥ 3 the language 

≤k./n
1 is not regular, while 

≤k./2
1 is.

Proof. The non-regularity of 
≤k./2

1 , i.e. for the case of duplication, is
already stated in Proposition 2.2.4. For n ≥ 3 Lemmata 2.5.10 and
2.5.11 show us that for every 2+-free word  starting with b and
every integer n ≥ 3 there exists a word , such that  ∈ (b)

≤3./n
1

and ||−22k ≤ || ≤ (3(n− 1) + 2)(|| − 2), i.e. the length of a minimal 
is bounded from above and below.
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2 Idempotency Languages

Now we take an infinite 2+-free word starting with b and pro-
duce a sequence of prefixes ()≥1 such that |+1−2|2k > (|| − 2)2k.
Then the  from the construction in the proof of Lemma 2.5.10 is
such that  ∈ 

≤k./n
1 , while +1 6∈ 

≤k./n
1 due to length considera-

tions. Therefore all our words  are pairwise in different equivalence
classes of the syntactical right congruence of 

≤k./n
1 , and by Theorem

1.2.5 the language cannot be regular.

With more than two letters also the special case of n = 2 is not
regular any more.

Proposition 2.5.14. Over a three-letter alphabet for every word and
integers k ≥ 4 and n > 1 the language 

≤k./n
1 is not regular.

Proof. A construction analogous to the proof of Proposition 2.5.13
using the length bounds from Lemma 2.5.12 proves this statement.
For more details the reader can also consult the proof for the special
case of bounded duplication [58].

Having found lower bounds for the interesting cases where m = 1,
we can now also state an upper bound, which determines the exact
place of languages 

≤k./n
m in the Chomsky Hierarchy, also for m > 1.

We provide here a proof completely different from the original one,
where a complicated PDA was constructed to accept 

≤k./n
m [53]. The

proof provided here is shorter, more elegant, and easier to under-
stand.

Proposition 2.5.15. For every word , and for integers k,m,n ≥ 0 the
language 

≤k./n
m is context-free.

Proof. We will transform words from + into a redundant represen-
tation, where every letter contains also the information about the
k ·m − 1 following ones. This way rewrite rules from ≤k./n

m
can be

simulated by ones with a left side of length only one. Their inverses
are monadic. Thus the McNaughton characterization of languages
provides us with the context-freeness of the language generated and
consequently of 

≤k./n
m .

First off we define the mapping ϕ : + 7→ ((∪{�})k·m)+ as follows.
We delimit with (. . .) letters from ( ∪ {�})k·m and with [. . .] factors
of the word  as usual. The image of a word  is

 7→ ([1 . . . k ·m]) ([2 . . . k ·m+ 1]) · · · ([|| − k ·m+ 1 . . . ||]) ·
([|| − k ·m+ 2 . . . ||]�) · · · ([||]�k·m−1).
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2.5 Bounded Idempotency

Thus every letter contains also the information about the k ·m fol-
lowing original ones from the original word , at the end of the word
letters are filled up with the space symbol �. This encoding can be re-
versed by a letter-to-letter homomorphism h defined as h() := [1]
if [1] ∈ , for the other case we select some arbitrary letter 
and set h() :=  if [1] = �; the latter case will never occur in
out context. It is clear that h(ϕ()) =  for words from ∗. Both
mappings are extended to languages in the canonical way such that
ϕ(L) := {ϕ() :  ∈ L} and h(L) := {h() :  ∈ L}.
Now we define the string-rewriting system R over the alphabet (∪

{�})k·m as follows:

R := {((m), ϕ(n′)[1 . . . |ϕ(n′)| −m · k − 1]) :  ∈ ≤k ∧ ′ ∈ ∗ ∧
 ∈ ′ · {�∗}∧ |m| = k ·m}.

A letter [m] is replaced by the image of n minus the suffix of
letters that contain �. This way application of rules from R keeps
this space symbol only in the last letters of our words. It should
be rather clear that ϕ(

≤k./n
m) = { : ϕ()R∗} or, in other words


≤k./n

m = h({ : ϕ()R∗}).
To determine the complexity of the language generated we now

consider the string-rewriting system S := R−1 ∪ {(ϕ(), Y)}, where Y
is a letter not occurring in Y. This systems accepts as a McNaughton
language ϕ(

≤k./n
m). As it is monadic, the language is context-free

by Proposition 1.4.2. Since context-free languages are closed un-
der letter-to-letter homomorphisms, also 

≤k./n
m = h(ϕ(

≤k./n
m)) is

context-free.

The properties of languages generated by bounded idempotency
which we stated for the non-regularity proofs earlier also allow us
to conclude that in many cases the inclusions 

≤k./n
1 ⊂ 

≤k+1./n
1 are

proper. For this, however, we first need to recall the notion of circular
pattern avoidance. A word  is said to be circular square-free, iff
it is square-free and so are all its conjugates. This means that one
can arrange the word in a circle with the first letter following the last,
and nowhere along the circle there is a square. We explicitly state an
immediate consequence of this definition.

Lemma 2.5.16. For a circular square-free word  the word  con-
tains no square shorter than  itself.

Circular cube-freeness is defined analogously. It is known that over
a three letter alphabet there exist circular square-free words of any
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length greater than 17, and over two letters there exist circular cube-
free words of any given length [22].

Proposition 2.5.17. For every word  over two letters all inclusions

≤k./n

1 ⊂
≤k+1./n

1 are proper for n ≥ 3 and k ≥ 2.

Proof. From Lemma 2.5.10 we know that for every 2+-free word 
starting with b and every integer n ≥ 2 there exists a word , such
that  ∈ (b)

≤3./n
1 . At some point of  a change from one letter to

another must occur. So there we can construct any circular cube-free
word. Let us construct such a word  of length k + 1 for some fixed
k. In the next step we can apply here the rule → n.
The resulting factor n can also be produced by shorter rules, but

Lemma 2.5.10 also shows that there is a lower bound on the num-
ber of additional symbols produced in this process. Thus by further
applying the rule  → n we can reach a word, where the block of
+ is so long in relation to the rest of the word, that it is impossible
to produce the same word only with rules where the left side is not
longer than k, since by a generalization of Lemma 2.5.16 to blocks
n instead of just 2 no shorter rule can have been applied anywhere
within this block.

Proposition 2.5.18. For every word  over three or more letters there
exists a k such that all inclusions 

≤k./n
1 ⊂ 

≤k+1./n
1 are proper for

n ≥ 2 and k ≥ k; if  has a factor bc, then k = 18 will work.

Proof. k will be the maximum of two values. One is the small-
est number such that with rules of left sides of this length
we can produce a factor of the form bc in . For exam-
ple, for the word bbbbbbccc the value is 9: with one rule
we can produce bbbbbbcbbbbbbccc and with another one
bbbbbbcbcbbbbbbccc. The second value is 18, since starting
from this length there exist circular square-free words of any given
length.
From Lemma 2.5.12 we know that over a three-letter alphabet for

every square-free word  starting with bc and every integer n ≥ 2

there exists a word , such that  ∈ (bc)
≤4./n

1 . Thus also every
circular square-free word can be constructed. Starting from lengths
of 18, such a word always exists, and starting from k we also can
suppose that a word in 

≤k./n
1 contains a factor of the form bc. Since

Lemma 2.5.12 also provides a lower bound on the length of the addi-
tional , which is produced, the same proof technique as for Proposi-
tion 2.5.17 applies.
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2.6 General Idempotency

When dropping all restrictions on the idempotencies, a fundamen-
tal difference to the cases treated up to this point is that we have
infinitely many rewrite rules, whereas so far, due to the length re-
strictions, there have been only finitely many. In some simple cases
there are finite sets equivalent in generating power, but not in gen-
eral as already shown by Propositions 2.5.17 and 2.5.18.
So we will first look at another restriction than length bounds,

namely at smaller alphabets. For one and two letters, many ques-
tions can still be answered. After this we list a number of results for
the completely unrestricted cases, most of which carry over more or
less directly from previous ones.

2.6.1 The One-Letter-Case

As one might expect, the one-letter case does not hold any surprises.
Also without any length bound, relations are always confluent, and
languages are always regular.

Proposition 2.6.1. Over a one-letter alphabet all relations ./n
m
are con-

fluent.

Proof. It is easy to see that the diamond property holds, i.e. 1 ←
 → 2 ⇒ ∃(1 →  ← 2) for the relation ./n

m
, and this implies

confluence [12]. Looking at a word as a unary number, applying a
rule from ./n

m
amounts always to adding for n > m and to subtracting

for n < m, and both these operations are associative.
The only problematic case is the subtraction of two numbers,

whose sum is greater than the original number. For this, consider
a rule (k)m → (k)n for some positive integer k. It reduces the num-
ber of letters by (m − n)k. Thus in every rule application a multiple
of m− n is removed. Via the rule m → n we can arrive at the same
result in k steps. Any word  is reduced in this way to the irreducible
word ℓ, where ℓ is the remainder when dividing || by m − n. Thus
ℓ is the unique normal form and confluence is given.

Proposition 2.6.2. Over a one-letter alphabet {} for every nonempty
word  and integers m,n ≥ 0 the language ./

n
m is regular.

Proof. We assume that || ≥ m, otherwise no rule can be applied,
and ./

n
m is trivially regular, because it is finite. For n ≤ m the lan-

guage generated is finite and therefore also regular. For n > m we
have the rule m → n; taken just by itself it generates the language

57



2 Idempotency Languages

(n−m)∗ starting from a word . Applying any other rule km → kn

for some k > 1 adds k(n −m) letters , thus the result is already in
(n−m)∗. Therefore ./

n
m =(n−m)∗.

2.6.2 Confluence over Two Letters

While the step from one letter to two makes things significantly more
complicated, things remain more tractable than for the case of still
larger alphabets.

Proposition 2.6.3. Over a two-letter alphabet all relations ./n
0
and ./n

1
are confluent for all n.

Proof. Form = 0 the diamond property holds for ./n
m
. Rule application

amounts to the insertion of a factor n, and inserting two such factors
can obviously be done independently of each other.
For m = 1 two rule applications are obviously independent, if their

sites do not overlap. In the case of an overlap such that not one site
is completely inside the other, it suffices to realize that expansions
 → n preserve prefixes and suffixes, so the two rules can still be
applied independently. The remaining case is the one of two rules
→ n and z→ zn where z = z1z2. Also here confluence is given as
shown by the following

z→ zn → z1
nz2z

n−1 n−1→ (z1nz2)n ← z1
nz2 ← z.

Thus confluence is always given, though for ./n
1
the diamond property

does not hold.

Proposition 2.6.4. Over a two-letter alphabet relations ./n
m

are not
confluent for m< n and m ≥ 2.

Proof. For such a relation look at the word (b(b)m−1)m. It is as
a whole an m-th power and can therefore be rewritten in one step
to  = (b(b)m−1)n, which contains n blocks of more than one
consecutive letters . On the other hand, around the border of to
adjacent factors b(b)m−1 of the original word we have the fac-
tor (b)m, which can be rewritten to (b)n. But then no rewriting
spanning the entire word will be possible any more, because nei-
ther the initial b nor the final (b)m−1 cannot be expanded. Thus
we obtain by further application of rules from ./n

m
the language

b[(b)m)((b)n−m)∗]m−1(b)m−1), all of whose words have only
m blocks of more than one consecutive letters . Therefore  is not
in this language, which suffices to prove our claim.
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Thus all cases of length-increasing relations are treated, and we
come to the cases of length-reducing relations where confluence is
equivalent to convergence toward a unique normal form. The first
result holds even for alphabets of any size.

Proposition 2.6.5. Relations ./0
m
are confluent only for m ≤ 1.

Proof. ./0
1
is trivially confluent, since here every word can be reduced

to λ, and this is the only irreducible word for this relation. For greater
m consider the word (b)m(b)m−1. It can be reduced by the rules
(b)m → λ and (b)m → λ to (b)m−1 and (b)m−1 respectively.
Both of these are irreducible, which proves our claim.

Proposition 2.6.6. For m > n ≥ 1 over a two-letter alphabet relations
./n
m
are confluent for m = n+ 1.

Proof. The confluence of ./1
2
we can deduce indirectly from the fact

that the only square-free words over two letters are λ, , b, b, b,
b, and bb. ./1

2
can reduce every word to one of these, and the

combination of first and last letter together with the total number of
distinct letters uniquely identify the seven square-free words. At the
same time these three properties are invariant under the application
of rules from ./1

2
. Thus all words derived from an original word can

eventually be reduced to the same square-free word, which proves
confluence.
We now proceed to the case ./2

3
. For noetherian relations conflu-

ence is equivalent to local confluence, so we will show only that the
latter property holds. As always there is no problem for local conflu-
ence, if two application sites of rules do not overlap; the rules can be
applied independently. For overlapping sites we will distinguish sev-
eral cases. Let the two applicable rules be →  and  → 
with || ≥ ||.
If the overlap includes no more than a square of each of the two

cubes, where the rules are applied, then rule application is still inde-
pendent. If, on the other hand,  is completely inside of one factor
, then it occurs in all three factors . Let ′ be the word obtained
from  by applying  → . Then we can either go from  to
 and in two steps to ′′, or we can go in three steps from 
to ′′′ and then to ′′; so no matter which rule we apply first,
we can arrive at ′′. Thus the only interesting cases are, where 3

transgresses both borders between the .
If the central  includes the border between two  and 3|| ≤ ||,

then two factors 3 occur at the border between two . Thus
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there are a prefix p and a suffix s of  such that  = ps and
 = spspsp for some  ∈ ∗ as we can see from the central .
Thus  = spspspspspspspspsp. Application of  →  in
two sites results in spspspspspspsp = sp(spsp)3, which can
be reduced to sp(spsp)2. This is the same word we obtain by first
reducing 3 = (spspsp)3 to spspspspspsp and then applying
pspsps → psps in the center. If the border between two  is inside
one of the lateral , then a similar argumentation applies; if the bor-
ders between  and  coincide, then things are even easier.
So it remains to treat the case that 3|| > ||. Here both borders

between the factors  form part of the occurrence of , and thus
 is overlapping. Let us look at the position of these borders relative
to the . If they occur at the same position in both , then || = 2||,
so 3 = ̂6 for some conjugate ̂ of . Then also 2 = ̂4. Thus
applying the rule  →  results in ̂4. Applying, on the other
hand,  →  produces ̂5, because of the conjugacy of  and ̂.
Then we can continue with one step of ̂̂̂→ ̂̂ to ̂4, which is the
same word that was obtained in the first case.
So let the borders between the  occur at different points in the

two . We distinguish two cases: first, let 2|| > ||. There is a factor
of 3 inside 3 and |3| > ||+ ||. Therefore Theorem 1.1.1 applies
showing that 3 has period ||. Thus 3 must again be equal to ̂6

for some conjugate ̂ of .
It remains to treat the case where 2|| < ||. From the posi-

tion of the factors  relative to the borders we can see that 
is overlapping and can be written in the form rtr for nonempty
words r and t. The overlap r is partitioned into two words
2 and 1 by the border between the  such that r = 21.
We can now write 3 as 1trrtrrtrtrrtrrtrtrrtrrt2. Applying
first  →  in the center results in 1trrtrrtrtrrtrtrrtrrt2,
which is equal to 1trr(trrtr)3rt2 and can therefore be re-
duced further to 1trr(trrtr)2rt2. But this can be written
1trrtrrt21trrtrrt2 = 2 and is therefore equal to the result
of applying →  to start with.
Thus also ./2

3
is confluent. Relations ./n

m
for m ≥ 4 can be shown to

be confluent in analogous manner for all cases, where m does not
touch more than two factors . If it does touch three or more such
factors, then we have a common stretch of length greater than 2||
with periods both || and ||. By Theorem 1.1.1 we see that m and
m share the period gcd(||, ||), and confluence follows easily.

As soon as the difference between m and n becomes greater than
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2.6 General Idempotency

one, all relations ./n
m
are not confluent any more.

Proposition 2.6.7. For m > n over a two-letter alphabet relations ./n
m

are not confluent for m ≥ n+ 2.

Proof. For a given relation ./n
m

with m ≥ n + 2 let us look at
the word ((b)n+1)m(b)m−n−1. It can be reduced to the irre-
ducible ((b)n+1)m−1bn and to ((b)n+1)n(b)m−n−1, which can
also be written ((b)n+1)n−1(b)m and can be reduced further to
((b)n+1)n−1(b)n. These two normal forms are clearly different
from each other, which suffices to prove our claim.

Thus we have fully characterized the conditions under which rela-
tions ./n

m
are confluent over alphabets of one and two letters. Table

2.6.2 displays these results graphically.

m \ n 0 1 2 3 4 5 6 · · ·
0 + + + + + + + · · ·
1 + + + + + + + · · ·
2 - + + - - - - · · ·
3 - - + + - - - · · ·
4 - - - + + - -
5 - - - - + + -
6 - - - - - + +
...

...
...

...
...

. . . . . .

Table 2.1: Confluence of ./n
m

over a two-letter alphabet. + and −
denote confluence and non-confluence, respectively.

2.6.3 Regularity over Two Letters

For a two-letter alphabet the cases of insertion and deletion, i.e. lan-
guages ./

1
0 and ./

0
1 , are both regular. This is known from work

on insertion and deletion closure of regular languages, which has
been summarized by Ito [45]. We now show that also the insertion
of squares results in regular languages, while for cubes and words of
higher powers regularity is not given any more. To prove the regular-
ity of ./

n
0 , we first reduce it to a simpler case.

Proposition 2.6.8. For a nonempty word  and all integers k ≥ 3 we
have 

≤k./n
0 =

≤2./n
0 and consequently ./

n
0 =

≤2./n
0 .
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2 Idempotency Languages

Proof. We first show that λ
≤2./2

0 = E, where the language E consists
of all words, which have an even number of both  and b. Let
R ⊂ ≤2 ./2

0
be the string-rewriting system {λ → , λ → bb, λ →

bb, λ→ bb}. Application of rules from both R and R−1 preserves
the defining properties of E. Since the same is true for rules λ → 4

and λ→ b4, we have λ
≤2./2

0 ⊆ E.
To see that the inclusion holds also in the other direction, take an

arbitrary word from E. Apply rules  → λ and bb → λ as often as
possible. The resulting word will be either from (bb)∗ or (bb)+.
Thus it can be reduced to λ via rules bb→ λ or bb→ λ respec-
tively. But if R−1 can reduce the word to λ, then R can generate it
from λ. this proves λ

≤2./2
0 = E.

For all k ≥ 2 we have R ⊂ ≤k ./2
0
and also R ⊂ ./2

0
, and all of these

relations preserve even numbers of both the letters  and b. Since
already R produces all of these words, all other rules are unnecessary
in the sense that they do not add generative power. As a final obser-
vation note that insertions can take place only between the letters of
the original word and thus ./

n
0 = λ./

n
0[1]λ./

n
0[2]λ./

n
0 . . .[||]λ./

n
0 .

The same holds for the bounded versions of square-insertion, and
this proves the proposition.

The regularity of ./
n
0 for n ≤ 2 follows almost immediately.

Proposition 2.6.9. For a nonempty word  and an integer n ≤ 2 the
language ./

n
0 is regular.

Proof. As just mentioned, the case n = 1 was treated already in ear-
lier work [45], n = 0 is trivial. After the proof of Proposition 2.6.8 for
a word  = 12 . . . r of r letters it is straight-forward to see that
./

n
0 = E1E2E . . . rE. Since E is regular, also ./

n
0 is regular.

Before establishing the non-regularity of ./n
0
for n ≥ 3 we state an

important property of these relations.

Lemma 2.6.10. Over a two-letter alphabet {, b} for every 2+-free
word  starting with b and every integer n ≥ 3 the shortest word 
such that  ∈ λ./

n
0 fulfills (n− 2)|| ≤ || ≤ (n− 1)||.

Proof. That (n−1)|| is an upper bound is immediate by applying the
rule λ→ n. For seeing that (n− 2) ||2 ) is a lower bound consider the
last rule λ → zn applied in the generation of . It must produce at
least (n − 2)|z| letters of , otherwise a repetition of order greater
than two would form part of . In the optimal case 2|z| letters of 
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2.6 General Idempotency

are produced. Since every prefix of a 2+-free word is also 2+-free the
same must be true for all rules applied before. Thus all in all at least
(n− 2)|| letters are produced for .

The upper bound is tight only for a few very short words like b. To
see why for longer words it is never reached let us look at a different
construction establishing the same bound. We construct  by first
applying the rule λ → [1]n. Let [1] = , then either [2] or [3]
must be b, because  is 2+-free. We apply λ → bn after the first or
second letter respectively. Then the next  is inserted and so on. In
the worst case we produce n− 1 extra letters for every letter of  as
above. However, this is only the case if in  the two letters alternate
after every position. In a 2+-free word this is possible for at most 4
positions, because a factor bb has repetitiveness 5

2 already. Thus
for words longer than 4 there is always a way to construct  with
|| < (n− 1)||
With these preliminaries stated we can prove non-regularity of ./n

0
for n ≥ 3 by a refinement of a method originally developed by Wang
[92].

Proposition 2.6.11. For a nonempty word  and an integer n ≥ 3 the
language ./

n
0 is in general not regular.

Proof. We show that λ./
n
0 is not regular. From Lemma 2.6.10 we see

that the shortest word , such that  ∈ λ./
n
0 for a 2+-free  is such

that (n − 2)|| ≤ || ≤ (n − 1)||. We construct a series of 2+-free
words ()≥1 such that (n − 2)|+1| > (n − 1)||. This is possible
since there exists an infinite 2+-free word.
Consider now the corresponding series ()≥1 of shortest words

such that always  ∈ λ./
n
0 . From the length bounds for the  it is

clear that j cannot be in λ./
n
0 for  > j. Thus the infinitely many 

are in pairwise different equivalence classes of the syntactic congru-
ence, which implies that there is an infinite number of such classes.
By Theorem 1.2.5 the language λ./

n
0 is not regular.

Now we establish similar length bounds for relations ./n
1
, which will

then allow us to prove their non-regularity along similar lines.

Lemma 2.6.12. Over a two-letter alphabet {, b} for every 2+-free
word  starting with b and every integer n ≥ 3 there exists a word
, such that  ∈ (b)./

n
1 and || ≤ (3(n− 2) + 2)(|| − 2).
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2 Idempotency Languages

Proof.  being 2+-free implies that there is no factor  for any
letter  ∈ . Thus the alphabet’s containing only two elements guar-
antees that after at most 2 positions in  letters repeat, i.e. for every
position in  its letter is repeated at most three positions later. Thus
we can construct a word having  as a prefix in the following way:
starting from b, always one letter more of  is constructed per step.
We take the shortest suffix z of the already constructed part of 
starting with the next letter needed. On it we apply the rule z → zn

putting the required letter in the position. As exposed above, the
maximum length of z is 3. This process takes exactly || −2 steps. In
each step at |z|(n− 1) ≤ 3(n− 1) new letters are introduced. At least
one of them forms part of , and thus at most 3(n− 2) + 2 additional
letters are introduced, which proves the length bound on .

Lemma 2.6.13. Over a two-letter alphabet {, b} for every 2+-free
word  starting with b and every integer n ≥ 3 there exists no word
, such that  ∈ (b)./

n
1 and || ≤ log2(||/2).

Proof.  is obtained from b by the application of rules z→ zn. Since
 is 2+-free and n ≥ 3, every such rule must produce at least one
additional symbol outside of , therefore contributing to . At the
same time each rule produces at most 2|ℓ| letters of , where ℓ is
the rule’s left side. Thus at least log2(||/2) rules must be applied,
since our starting word has length 2 and each idempotency rule can
at most double the length of the subword of  already produced.
Consequently,  is at least log2(||/2) symbols long.

Proposition 2.6.14. Over a two-letter alphabet for every word  and
integers n ≥ 3 the language ./

n
1 is not regular, while ./

2
1 is.

Proof. The regularity of ./
2
1 , i.e. for the case of duplication, was

proven by Dassow et al. [26].
For n ≥ 3 Lemmata 2.6.12 and 2.5.10 show us that for every 2+-

free word  starting with b and every integer n ≥ 3 there exists a
word , such that  ∈ (b)

≤3./n
1 and log2(||/2) < || ≤ (3(n − 1) +

2)(|| − 2), i.e. the length of a minimal  is bounded from above and
below.
Now we take an arbitrary infinite 2+-free word starting with b and

produce a sequence of prefixes ()≥1 such that (3(n− 1) + 2)(|| −
2) < log2(|+1|/2). Then the  from the construction in the proof
of Lemma 2.6.12 are by their construction such that  ∈ 

≤k./n
1

and || ≤ (3(n − 1) + 2)(|| − 2). By Lemma 2.5.10 we see that
+1 6∈ 

≤k./n
1 , because the shortest word  such that +1 ∈ 

≤k./n
1
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2.6 General Idempotency

is such that || > log2(|+1|/2). But by our choice of the  we have
|| < log2(|+1|/2).
Therefore all our words  are in pairwise different equivalence

classes of the syntactic right-congruence of 
≤k./n

1 , and therefore the
language cannot be regular.

We mention here that the regularity of ./
2
1 was also proven by

Ito et al. [47] along quite different lines from those of Dassow et al.
[26]. The key result there is the following, which is similar in nature to
Proposition 2.6.8, and which will be treated in more detail in Section
3.4.

Proposition 2.6.15. Over an alphabet of two letters we have 
≤k./2

1 =

≤2./2

1 and consequently ./
2
1 =

≤2./2
1 for all words  and for k ≥ 2.

Regularity trivially holds for relations ./n
m
with n ≤ m, which gen-

erate only finite languages. Therefore the only interesting cases left
are those where 2 ≤ m < n. An interesting observation is that in the
cases treated so far the languages generated are regular exactly in
those cases, where an equivalent finite system of rewrite rules gen-
erates the same language. We strongly conjecture that this holds for
relations ./n

m
where 2 ≤ m < n, and we also think that only regular

languages are generated by these relations. However, a trivial length
bound on the left side of rules such as the length of the original word
does not hold as the following example illustrates.

Example 2.6.16. Let  be the word 10b33b310b3, which has
length 32. Consider the language ./

4
3 . By application of rules

3 → 4 and b3 → b4 we can arrive from  at the word (10b10)3;
from here by application of the rule (10b10)3 → (10b10)4 we obtain
words with more than 3 changes from  to b within the word. It is
quite clear that with shorter rules such words cannot be obtained,
and therefore 

=k./4
3 6=./

4
3 for k < 60.

Thus the question of regularity remains to be answered for an in-
teresting class of idempotency languages, and, of course, analogous
questions can be considered for alphabets of three or ore letters. For
the non-regular variants is remains to determine, whether they are
context-free or not. Another interesting question is, whether local
confluence always implies general confluence for the idempotency
relations considered here.
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2 Idempotency Languages

2.6.4 Confluence

In the cases of deletions and insertions increasing the alphabet size
does not matter so much and we can still establish the confluence of
the corresponding relations.

Proposition 2.6.17. The relations ./n
0
for n ≥ 0 and ./0

1
are confluent.

Proof. The confluence of ./0
1
is trivial, because here every word can

be reduced to λ and this is the only irreducible word. For the conflu-
ence of ./n

0
, on the other hand, the same proof as for the bounded

case in Lemma 2.5.1 applies.

Proposition 2.5.3 states that for all k ≥ 3 and n ≥ 2 the relation
≤k./n

1
is not confluent over an alphabet of three or more letters. When

dropping the length bound, the proof technique used there cannot be
applied any more. The only thing we can state here is local conflu-
ence for relations ./n

1
, which might indicate that general confluence

holds.

Proposition 2.6.18. The relations ./n
1
for n ≥ 2 are locally confluent.

Proof. So let ←→ . As usual, unless one application site is prop-
erly inside the other, the diamond property holds. Otherwise we can
factorize  = 12345 such that without loss of generality  =
1(234)n5 and  = 12n

3
45. Then via rules (3,n

3
)

and (2n
3
4, (2n

3
4)n) we obtain 

n→ 1(2n
3
4)n5 ← ,

which proves our claim.

Proposition 2.6.19. The relations ./0
m
are not confluent for m ≥ 2.

Proof. We consider the word mb(m−1b)m−1. It contains two factors,
which are powers of orderm, namely m and (m−1b)m. Reducing the
first one results in b(m−1b)m−1, reducing the second one results in ;
both are irreducible, and thus the reduction relation is not confluent.

Proposition 2.6.20. The relations ./1
m
are not confluent for m ≥ 2.

Proof. For the case n = 2 already Example 2.1.2 provides the appro-
priate counterexample of (bcbbcbc)./

1
2 = {bc, bcbc, bcbbc}.

This can be generalized by using for a given n the word
(bcb)mc(bc)m−2, which can be reduced to the two irreducible words
bc and (bcb)m−1bc.
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2.6 General Idempotency

2.6.5 Regularity

As already stated in Section 2.2.4, the cases of insertion and dele-
tion, i.e. languages ./

1
0 and ./

0
1 , are both regular, see Propositions

2.2.7 and 2.2.8. Non-regularity can be established in several cases
in similar ways to the proofs for bounded idempotencies, only the
length bounds change. We first fix these in a few lemmata.

Lemma 2.6.21. Over a two-letter alphabet {, b} for every 2+-free
word  starting with b and every integer n > 1 there exists a word
, such that  ∈ (b)./

n
1 and || ≤ (3(n− 1) + 2)(|| − 2).

Proof. The same construction as in the proof of Lemma 2.5.10 ap-
plies.

While the upper bound carries over, the lower bound is significantly
lower than the one for the bounded case stated in Lemma 2.6.22.
The length bound provided is not tight, but suffices for our purposes.

Lemma 2.6.22. Over a two-letter alphabet {, b} for every 2+-free
word  starting with b and every integer n ≥ 3 there exists no word
, such that  ∈ (b)

≤3./n
1 and || ≤ log2(||/3).

Proof.  is obtained from b by the application of rules z→ zn. Since
 is 2+-free and n ≥ 3 every such rule must produce at least one
additional symbol outside of , therefore contributing to . At the
same time each rule produces at most 2|ℓ| letters of , where ℓ is
the rule’s left side. Thus at least log2(||/3) rules must be applied,
since our starting word has length 3 and each idempotency rule can
at most double the length of the subword of  already produced.
Consequently,  is at least log2(||/3) symbols long.

Lemma 2.6.23. Over a three-letter alphabet {, b, c} for every
square-free word  starting with bc and every integer n > 1 there
exists a word , such that  ∈ (bc)./

n
1 and log2(||/3) ≤ || ≤

(|| − 3)(4(n− 1) + 3).

Proof.  can be constructed starting from bc as in the proof of
Lemma 2.5.12. Only the lower bound for the length here corresponds
to the one from Lemma 2.6.22.

Proposition 2.6.24. Over a two-letter alphabet for every word  and
integers n ≥ 3 the language ./

n
1 is not regular, while ./

2
1 is.
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2 Idempotency Languages

Proof. The regularity of ./
2
1 , i.e. for the case of duplication, was

proven by Dassow et al. [26]. For n ≥ 3 Lemmata 2.6.21 and 2.6.22
allow a proof completely analogous to the one of Proposition 2.5.13.

With more than two letters, also here the special case of n = 2
is not regular any more; the proof can again be done by the same
method as for bounded idempotencies and the length bounds from
Lemma 2.6.23.

Proposition 2.6.25. Over a three-letter alphabet for every word and
an integer n > 1 the language ./

n
1 is not regular.

With this we close this section and also this chapter. The results on
unbounded cases are much less than for the bounded ones; mainly
we have only those ones that carry over in some way from the case
of bounded length. Thus much remains to be done in this direction,
but the problems left open seem vary hard in general.
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3 Duplication

The special case of duplication was the origin of the investigations
on idempotency languages as presented so far. Also it is the case
with most motivation from a practical point of view, namely from the
duplications occurring in DNA strands as presented in Section 2.1.
Therefore there exist some results, which have not been generalized
to general idempotencies and also some results, which seem to be of
interest only for duplication like the duplication codes defined further
down. This chapter collects results of this type.
First off, we dedicate a section to the discussion of the general du-

plication language and the reasons, why it is so hard to prove its non-
context-freeness. Then some properties of duplication languages are
presented, which have not been stated in the preceding chapters;
mainly they concern related decidability questions.
The next section will introduce the concept of duplication root; first

its motivation from other concepts of root of a word will be explained,
then a number of results are presented. Following this, we investi-
gate a special type of code that is resistant to duplications occur-
ring in its code words. Finally, we apply duplication not just to single
words but to entire languages; here we mainly focus on the question,
whether this preserves regularity and context-freeness.

3.1 General Duplication

Since in the current chapter we will speak almost exclusively about
relations ./n

m
where m = 1 and n = 2, we introduce a simpler nota-

tion omitting these two redundant parameters. The symbol ♡ seems
quite appropriate for the duplication operation, because viewed from
bottom to top it goes from one origin to two equal halves. Thus we
will henceforth write ♡ instead of ./2

1
, ♡≤k instead of ≤k ./2

1
and ♡k

instead of =k ./2
1
; this way we also save the equality sign in the lat-

ter relation. The languages generated from a word by the respective
rewrite relations are denoted by ♡. ♡≤k, and ♡k.
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3 Duplication

3.1.1 Context-Freeness

We will try to shed some light on the reasons for the complicatedness
of the problem of determining whether general duplication languages
are context-free. The main tools in formal language theory for prov-
ing a language non-context-free are pumping lemmata and Parikh’s
Theorem about semi-linear languages. The latter holds for all idem-
potency languages in a very straight-forward manner. The Parikh
sets are actually not just semi-linear but even linear in the algebraic
sense of the term, which, however, is different from the meaning for
formal languages.

Proposition 3.1.1. For every word  ∈ ∗ the language ♡ is semi-
linear.

Proof. For all letters  ∈ ∗ there are rules (, ) in ♡. Thus any
letter occurring in  can be duplicated increasing its number of oc-
currences by one. This way we generate the following Parikh set:






ψ() +
∑

∈alph()
ℓ · ψ() : ℓ ∈ N for all  ∈ alph()







.

It it obvious that the Parikh vectors of any word obtained from  by
longer duplications are already in this set. Thus it is equal to ψ(♡).
Since this set is linear, the language ♡ is semi-linear.

Thus Parikh’s Theorem 1.2.8 does not provide us with means to
show that ♡ is in general not context-free.
Neither can pumping lemmata like Lemma 1.2.7 provide us with

any way to easily prove the non-context-freeness of duplication lan-
guages. If a word can be factorized as12345, then by defi-
nition all words1

2
3

4
5 are in♡ for  ≥ 1 by rules (2,22)

and (4,44); the only hope might be the case, where  = 0.
So both the Parikh Theorem and the pumping lemmata seem to

be fulfilled by duplication languages because of their density, i.e. be-
cause they contain so many words. We will now show that duplication
languages are indeed very dense also in the formal meanings of the
word. Recall that density for a language means to contain any word
as a factor in one of the language’s words. With a construction simi-
lar to the ones used in Lemma 2.5.10 and the following ones, we can
show that duplication languages are dense.

Proposition 3.1.2. Every language ♡ is dense over the alphabet
alph().
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Proof. Let alph() be {1, 2, . . . , ℓ} and without restriction of gen-
erality let the letters occur in the order starting from 1 with ℓ being
the letter with the latest first occurrence in . We now give a method
to construct an arbitrary word  letter by letter in the position just fol-
lowing the first occurrence of ℓ. For this let us put a marker θ just
after this position.
[1] is in alph() and has an occurrence left of θ. Now duplicate

the factor starting in such an occurrence and reaching until θ. This
will leave the letter [1] just after the marker θ. Then we move the
marker one position to the right and repeat the procedure for [2].
In this manner we will finally arrive at the entire word , and thus any
word can occur as a factor in ♡, which proves our claim.

There is also another notion of density for languages. The func-
tion n 7→ |n ∩ n| is called the density function of L. The maximum
growth such a function can have is exponential, and this is reached
by duplication languages.

Proposition 3.1.3. The densities of ♡ and its complement grow ex-
ponentially for alph() > 1.

Proof. If alph() > 1, then somewhere in  there is a factor y for
letters  and y distinct from each other. At this place we can con-
struct any word  in {, y}∗y in the following way: let  have ℓ
changes from the letter  to y; then duplicate y until reaching (y)ℓ.
Now by rules (, ) and (y, yy) we can multiply each of the letters to
the number, in which it occurs in the respective block and we obtain
.
So let 12 be the factorization of  such that the last letter of

1 is the  from above. Then we have shown that 1{, y}∗2 is
a subset of ♡. Since the density function of {, y}∗ is λ.2, the
density function of 1{, y}∗2 is at least λ.2−|| for all values
greater than ||. Thus also the density function of ♡ must grow
exponentially.
For the complement of ♡ things are rather obvious. Let  be a

letter different from [1] and let y be a letter different from the last
one of . Then ∗y is a subset of the complement of ♡, and
already its density grows exponentially.

These results explain in part, why the pumping lemmata and the
Parikh Theorem fail to prove duplication languages non-context-free.
Intuitively speaking, they cannot find an appropriate gap in ♡, be-
cause these languages are so dense.
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3.1.2 Decidability Questions

When a new class of languages is defined, one of the first things to be
investigated is always, which of their properties are decidable. This
section states a few decidability results for duplication languages.
The first one actually shows that being a duplication language is a
decidable property for regular languages. In the proof we use several
of the properties we have established in prior sections.

Proposition 3.1.4. Given a regular language L one can algorithmically
decide whether or not L is an unbounded duplication language.

Proof. The algorithm works as follows:

(i) We find the shortest string z ∈ L, for regular languages this can
be done algorithmically. If there are several strings in L of the
length of z, then L is not an unbounded duplication language.

(ii) We now compute the cardinality of alph(z).

(iii) If |alph(z)| ≥ 3, then there is no  such that L = ♡, see Propo-
sition 2.6.25.

(iv) If |alph(z)| = 1, then L is an unbounded duplication language if
and only if L = {|z|+m |m ≥ 0}, where alph(z) = .

(v) If |alph(z)| = 2, z = z1z2 . . . zn, z ∈ alph(z), 1 ≤  ≤ n, L is an
unbounded duplication language if and only if

L = z+
1
e1z2e2 . . . en−1z

+
n
, (3.1)

where

e =
�

z∗
+1, if z = z+1
{z + z+1}∗, if z 6= z+1

for all 1 ≤  ≤ n− 1. Note that one can easily construct a deter-
ministic finite automaton recognizing the language in the right-
hand side of equation (3.1).

The condition used in step (v) was provided in the initial article
about duplication languages by Dassow et al. [26]; the condition for
step (iv) follows from it and is almost trivial at any rate.

Now we come to a few more special decision problems that mainly
concern relations between two words and the duplication languages
generated by them.
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Proposition 3.1.5. The following problems are algorithmically decid-
able for unbounded duplication languages:

Membership: Given  and , is  in ♡?

Inclusion: Given  and , does ♡ ⊆ ♡ hold?
Equivalence: Given  and , does ♡ = ♡ hold?

Regularity: Given , is ♡ a regular language?

Proof. Clearly, the membership problem is decidable by generating
all words in ♡, which are not longer than . and inclusion can be
reduced to it, because we have ♡ ⊆ ♡ iff  ∈ ♡.
Clearly ♡ = ♡ holds only if, || = || and thus  = . In conclu-

sion,  =  iff ♡ = ♡. This implies that the equivalence problem
is decidable in linear time by simply deciding the equality of the two
given words.
The regularity can again be decided using Proposition 2.6.25: if
|alph()| ≥ 3, then ♡ cannot be regular, otherwise it definitely is.

3.2 Roots

As mentioned in the introductory Section 2.1, it is interesting for the
phylogenetic analysis of a DNA sequence in a genome to reconstruct
its duplication history. This means to determine what original se-
quence it might have come from via iterated duplications. In general,
./

1
2 is the set of candidates for a sequence . Since our objective

is not so much phylogenetic analysis, but the language theoretic in-
vestigation of the duplication operation, we will however only look at
the primitives that can be obtained in this way. This type of research
follows a tradition of reducing a word to something primitive called
its root.
In Formal Language Theory several concepts of root have been

defined. The most common one is probably the one of primitive root.
It is based on the fact that for every non-empty word  there exists a
unique primitive word p such that  ∈ p+; this unique p is called the
root of  [61, 10]. The concept of root was generalized to languages
in the canonical way: the root of a language is the set of roots of all
the words contained in this language.
We will now illustrate the use of the notion of primitive root in a few

exemplary results. Then we provide a short and informal overview of
other notions of root and then define idempotency roots in the same
spirit. Following this, we investigate the same questions for the case
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3 Duplication

of duplication that have been addressed for the primitive roots of
languages.

3.2.1 Primitive Roots

Primitiveness of words is a concept widely used, for example, in the
theory of codes [10]. As already stated in Section 1.1 a word is prim-
itive, iff it is not a non-trivial power of any word. The primitive word p
such that  ∈ p+ is unique for every word . Based on this, the prim-
itive root

p
 of a non-empty word  is defined to be the primitive

word p such that  ∈ p+.
This definition is extended from words to languages in the canoni-

cal way such that
p
L := {

p
 :  ∈ L}. The main focus in investiga-

tions on the primitive roots of languages was on decision problems
related to the finiteness and regularity of the root [40, 42, 60].
As an example for interest motivated from another point, Head

[38] proposed a way of visualizing a language in a discrete, two-
dimensional coordinate system with Q in some order on one axis and
the words’ degree on the second axis. Due to the uniqueness of
the primitive root, we have a one-to-one correspondence between
words and points in the plane. For this, languages with finite roots
are especially interesting, because they can be represented within
finite width.
In the regular case, there is a characterization of the languages

with finite or infinite root exists by means of so-called root terms
[42]. Further, Lischke [60] has shown that already regular languages
can have almost arbitrarily complicated roots. We now take a look at
the same question for the next class in the Chomsky Hierarchy, the
context-free languages.

Proposition 3.2.1. All context-free languages with finite primitive root
are regular.

Proof. Let {p1, p2, . . . , pn} be the finite root of a context-free lan-
guage L. Then for  ∈ {1, . . . , n} the languages L := { :  ∈ L∧

p
 =

p} = L ∩ p∗

are also context-free (by the closure of context-free lan-

guages under intersection with regular languages) and disjoint (by
the uniqueness of the primitive root). We have L =

⋃n
=1 L.

Now we restrict our attention to just one fixed L and define a homo-
morphism ϕ as ϕ(p) :=  for some letter . Since L is context-free,
also ϕ(L) is context-free by the closure of context-free languages
under homomorphisms. Further we know from a theorem of Harrison
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[36] that over a one-letter alphabet the regular and context-free lan-
guages coincide. Thus ϕ(L) is even regular. Finally, because regular
languages are closed also under inverse homomorphisms consider-
ing the ϕ−1 shows that all the constituting languages L are regular.
Summarizing we see that L is a finite union of such such regular L;
therefore L itself is regular.

We will now use this fact to design a decision procedure for the
question, whether the root of a context-free language is finite or not.
To this end we first collect a few useful results.

Lemma 3.2.2. Every language with finite primitive root is slender.

Proof. Let {p1, p2, . . . , pn} be the language’s root. Every p∗

contains

at most one word of any given length. Therefore L =
⋃n
=1 p

∗

contains

at most n words of any given length.

Ilie [43], [44] and Raz [78] have both shown that slenderness is
a decidable property for context-free languages. Further they have
also provided effective procedures to compute a decomposition of
those languages, which are slender, into finite numbers of paired
loops, the term for languages of the form {1

2
3

4
5 :  ∈ N}.

We will now investigate in more detail the properties of such paired
loops, and this will then allow us to tackle the decidability problem
mentioned above.

Lemma 3.2.3. For every factorization  = 12345 of a word
 ∈ ∗ the (paired loop) language L = {1

2
3

4
5 :  ∈ N} either

contains infinitely many primitive words, or
p
L consists of just one

word, that is L ⊆
p

∗.

Proof. The degree of a word is invariant under cyclic permutation.
Thus we can in the following consider words 

2
3

4
51 instead

of working with the original 1
2
3

4
5. We will call these words

() and the resulting language L′. If we suppose that the root of L′

is finite, then there is a primitive word p from this root such that the
language p∗∩L′ is infinite and therefore for arbitrarily large n we can
find  ≥ n such that () ∈ p∗.
Now with Theorem 1.1.1 for some large enough  we see that p is

also the root of 2, because 
2
is always a prefix of pω. Then also

3 is a prefix of pω. Similarly the root of 4 must be a conjugate of p,
and 51 is a suffix of ωp. It is clear that |135| must be divided
by |p| or be zero, because p is the root of infinitely many (). But
then we must have 351 ∈ p∗. Adding words 2 in front will not
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change this and neither will adding words 4 (i.e. words, whose root
is a conjugate of p) in the specified place do so, because both have
period and length |p|. Therefore all words () have the root p.

A second look at the last part of the proof also allows us to state
another result without further proof.

Lemma 3.2.4. In every paired loop {1
2
3

4
5 :  ∈ N} with finite

(i.e. singleton) root, the lengths of 2 and 4 are both multiples of
|p12345| and the language described is regular.

Proof. In the case of a singleton root in Lemma 3.2.3 in every step
from  to  + 1 the degree of the word is increased by a constant
number, more exactly by |24|/ |

p
|. Thus the entire language

has the form p

|135 |/ |

p
|
(
p

|24 |/ |

p
|
)∗

and is regular. This uses the fact that concatenation is commutative
for words with equal roots.

Our considerations up to this point in combination with Ilie’s and
Raz’s results allow us now to provide a different decision procedure
for the question treated by Horváth and Ito.

Theorem 3.2.5. For any context-free language it is decidable,
whether its primitive root is finite.

Proof. First we decide whether the given context-free language is
slender. If not so, then according to Lemma 3.2.2 its root is infinite.
Otherwise we compute the paired loops it consists of. Now it is easy
to find the root of the defining word of each one.
If for each one the iterated sections (that is the respective 2 and

4) have as lengths multiples of the respective roots’ lengths, then
by Lemma 3.2.4 all the paired loops are regular and at the same time
the given language’s root is finite. Otherwise the given language has
infinite root, because there is already one of the paired loops, which
contains infinitely many primitive words by Lemma 3.2.3 and is a
subset of the language under consideration.

From this proof we see further that for context-free (in this case
regular) languages with finite primitive root, this root can be effec-
tively constructed as the paired loops can be constructed. The final
extraction of the (singular) root of each loop is then trivial. This was
not stated in the earlier work by Horváth and Ito, although such a
construction could also be realized based on their method of proof.
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3.2.2 Other Roots

In combinatorics of words not only integer powers of words have
been considered, but also rational powers. Thus bbb

7
5 = bbbb.

The primitive words under this notion are the ones whose shortest
period is equal to their length; these are the non-empty words such
that for rational r the equality  = r implies r = 1 and  = . In the
literature numerous terms have been used for them; most commonly
they have been called unbordered [19] or non-overlapping [85], but
also dipolar [86], primary [61], d-primitive [85], and aperiodic [41]
words.
Analogous to the primitive root, Horvath and Ito defined the peri-

odicity root of a word  to be the shortest word  such that  is a
prefix of ω [41]; alternatively it can be characterized as the prefix of
length of the shortest period, which is where the name is motivated
from. The same notion of root was used under the simple name of
root by Carpi and de Luca [17].
Another variation of the primitive root is treated by Krawetz [48].

He defines the root of a language L not only to consist of all primitive
words p such that p+∩L 6= ∅, but drops the condition of primitiveness:

root(L) := { : ∃n[n ≥ 1∧n ∈ L]}.

The main focus of his investigations is on the change of state com-
plexity effected by this operation on regular languages.
Fazekas [33] defines the scattered root of a word derived from the

shuffle root of a set of words, which was introduced by Berstel and
Boasson [9]. If a word can be reached by shuffling some other word
 several times with itself, and if  is primitive under this notion, then
 is the scattered root of .
Further, notions of root have been defined along similar lines also

for languages instead of single words. Shyr calls R a root of the
language L, if there exists an integer  such that L = R [85]; a vari-
ation of this is the notions of premotif, where R has to be such that
L =
⋃

∈IR
 for a set I of integers [5].

3.2.3 Idempotency Roots

As we have seen, all the mentioned notions of root reduce a word
to another one, which is primitive or elementary under some notion.
For an idempotency relation ./n

m
the primitive words are the ones

which do not contain any repetition of order n, more formally it is the
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set RR(./m
n
); we want to emphasize here that it is not RR(./n

m
). To

obtain such a word, we can iteratively apply rewriting rules from the
inverse relation ./m

n
. Of course, this makes sense only if n > m such

that the inverse relation is noetherian, and this process ends at some
point. Therefore we will assume for the remainder of this section that
n > m for all idempotency relations ./n

m
in question without explicitly

stating this every time.
Another problem lies in the fact that unlike all the notions of root

defined above, the result is not always unique, but in general only
for convergent relations ./m

n
; in all other cases the root can be a set

of words. With these things in mind we define the idempotency root
as follows.

Definition 3.2.6. For n > m the ./n
m
-root of a non-empty word  is

./nm
p
 := RR(./m

n
) ∩./

m
n .

As usual, this notion is extended in the canonical way from words to
languages such that

./nm
p

L :=
⋃

∈L

./nm
p
.

The roots
=k./nm
p
 and

≤k./nm
p
 are defined in completely analo-

gous ways, and also these are extended to entire languages in the
canonical way.
First off we notice that an analogue to Proposition 3.2.1 does not

hold for any version of idempotency roots.

Proposition 3.2.7. For m ≤ n there are languages L in CF \ REG for
which ./nm

p
L is finite. The same holds for

=k./nm
p
L and

≤k./nm
p
L.

Proof. Consider the language L = {ℓbℓ : ℓ > 0}, which is context-
free but not regular. Then ./nm

p
L = {ℓbℓ : m ≤ ℓ < n}, also

≤k./nm
p
L =

{ℓbℓ :m ≤ ℓ < n}. Finally
=k./nm
p
L = {ℓbℓ : km ≤ ℓ < kn}.

In some sense this shows that iteration of idempotencies can cre-
ate more complicated structures from a finite set than iteration of
concatenation. Intuitively, the reason for this that catenation only
adds to the end of a word, while here we obtain nested structures.
Of course, there are also non-context-free languages with finite prim-
itive root, even non-enumerable ones like (b)K , where K is some
non-enumerable set of numbers; but this language cannot be created
by iterated catenation of b, only very selected words from (b)∗ are
taken.
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The primitive words have received their name from being primitive
under the notion of catenation and the related root. Also for our
roots there are primitive words, namely those that do not have any
repetition of order n for ./n

m
. We now take at look at the complexity

of the sets of all such words; these are exactly the roots of ∗. In the
length-bounded cases these are rather simple.

Proposition 3.2.8. For all positive m,n the languages
=k./nm
p
∗ and

≤k./nm
p
∗ are regular.

Proof. We consider the complement of the respective languages, that
is the language of all words containing a repetition of order n and
length exactly or maximally k. This language can be recognized by
a non-deterministic finite automaton, which operates in the following
way: it just reads the input string, and at some point guesses that a
repetition of length k (or shorter) and of order n starts. Then it stores
the next k letters in its states and matches them n− 1 times against
the following k letters. If this match is successful, then the rest of the
input is read, and the word is accepted. In all other cases the input
is rejected.
Clearly this automaton accepts the complement of the respective

root of ∗, which therefore is regular. Because the regular languages
are closed under complementation, also the root itself is regular.

For the unbounded case, the languages of irreducible words are not
regular any more, they are not even context-free.

Proposition 3.2.9. For all positive m,n the language ./nm
p
∗ is not

context-free.

Proof. Every context-free language Lmust fulfill the Pumping Lemma
1.2.7; this means that if it is infinite, then there exists some word
 ∈ L with a factorization  = 12345 with 24 6= λ such
that {1

2
3

4
5 :  ≥ 0} ⊂ L. As a consequence of this, for every

infinite context-free language there is no bound on the degree of
repetitiveness of factors of the words it contains. Thus none of these
languages can be ./nm

p
∗ for n ≥ 2.

We want to mention here that also for the complement of ./21
p
∗

non-context-freeness has been established. This was a long-standing
open problem, which was independently solved by Ross and Winkl-
mann [79] and by Rozenberg and Ehrenfeucht [31].
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3.2.4 Finiteness of the Duplication Root

In some way, all the roots described can be seen as generating sets
for the given language, though not in a strict sense, because they
usually generate larger sets. Still, one of the main questions about
generating sets in algebra seems especially interesting also here:
does there exist a finite generating set? Or in our context: is the root
finite? Trivially, duplication roots are finite over two letters.

Proposition 3.2.10. Over a two-letter alphabet for every language L
its duplication root ♡p

L is finite.

Proof. It is well-known that over an alphabet of two letters there ex-
ist only six non-empty square-free words. Since ♡p

L contains only
square-free words, it must be finite.

As in most cases for confluence and regularity, things become
more difficult over three or more letters. Let us first define the
letter sequence seq() of a word  as follows: any word  can be
uniquely factorized as  = 11 

2
2 · · ·

ℓ
ℓ for some integers ℓ ≥ 0 and

1, 2, . . . , ℓ ≥ 1 and for letters 1, 2, . . . , ℓ such that always j 6= j+1;
then seq() := 12 · · ·ℓ. Intuitively speaking, every block of several
adjacent occurrences of the same letter is reduced to just one occur-
rence.
We now collect a few elementary properties that connect a word’s

letter sequence with duplication and duplication roots.

Lemma 3.2.11. If for two words , ∈ ∗ we have seq() = seq(),
then there exists a word  such that (♡−1)∗  ♡∗, i.e. both  and
 are reducible to  via unduplications.

Proof. This is immediate, since every word can be reduced to its let-
ter sequence via rules (, ) for  ∈ . Thus our statement can be
satisfied by setting  = seq().

Now we state a result that links the letter sequence and the dupli-
cation root of a word in a fundamental way.

Lemma 3.2.12. If for two words , ∈ ∗ we have seq() = seq(),
then also ♡p = ♡p = ♡

p

seq().

Proof. Via rules (, ) for all  ∈  we can obviously go from  to
seq(). Therefore we have ♡

p

seq() ⊆ ♡p. So it remains to show
the converse inclusion, and ♡

p

seq() = ♡p will then imply our state-
ment.
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Let us suppose there exists a word z ∈ ♡p, which is not contained
in ♡
p

seq(). As already stated there exists a reduction from  to
seq() using only rules (, ) for  ∈ . Application of these rules
preserves the letter sequence of a word. There is also a reduction
from  to z via rules from ♡−1. Let us look at one specific reduction
of this type. As all possible reductions from  to seq() via rules
(, ) it starts in , too. At some point –possibly already in the first
step– it uses for the first time a rule (,) with || ≥ 2 and results
in a word z′. Here this reduction becomes different from the ones to
seq().
Because seq()2 is a subsequence of the letter sequence of the

word, where this rule is applied, seq()2 is a factor of seq(). Thus
we can apply a rule (seq()2, seq()) there and obtain the word
seq(z′). By Lemma 3.2.11 z′ is reducible to seq(z′), and it is still re-
ducible to z. So we can repeat our reasoning. Because the reduction
from  to z is finite, this process will terminate and show that there
is a word  reachable from both z and seq() via rules from ♡−1.
But z ∈ ♡p is irreducible under this relation, and thus we must

have  = z. Now seq()(♡−1)∗z shows that z ∈ ♡
p

seq(). Since this
contradicts our assumption, there can be no word in ♡p \ ♡

p

seq(),
and this concludes our proof.

In the proof, the word seq(z′) is obtained by rules, whose left sides
are not longer than the one of the simulated rule (,). Therefore
the same argumentation works for bounded duplication.

Corollary 3.2.13. If for two words , ∈ ∗ and an integer k we have
seq() = seq(), then also ♡≤kp = ♡≤kp = ♡≤k

p

seq().

Without further considerations, we also obtain a statement about
the finiteness of the root of a language.

Corollary 3.2.14. A language L has finite duplication root, iff ♡
p

seq(L)
is finite.

If a language does not have a finite duplication root, then this root
can not be of any given complexity. There is a gap between finite and
context-free languages, in which no duplication root can be situated.

Proposition 3.2.15. If a language has a context-free duplication root,
then its duplication root is finite.

Proof. For infinite regular and context-free languages the pumping
lemmata 1.2.6 and 1.2.7 hold. Since a duplication root consists only
of square-free words, no such language can fulfill these lemmata.
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Already for the bounded case this does not hold any more. For
example, for any k ≥ 1 we can use a circular square-free word  of
length greater than k. Then we have ♡≤kp

+ =+, and this language
is regular.

It is quite clear how the iteration of the union of several single-
ton sets can generate a regular language with infinite root; for the
simplest case of this type consider {, b, c}+. We will now illustrate
with an example that there are also regular languages constructed
exclusively by concatenation and iteration, which have an infinite du-
plication root.

Example 3.2.16. From the introductory Example 2.1.2 we can see
that the root of the word  = bcbbcbc consists of the two words
1 = bc and 2 = bcbbc. Let ρ be the morphism, which simply
renames letters according to the scheme  → b → c → . Then ρ()
has the two roots ρ(1) and ρ(2); similarly, ρ(ρ()) has the two
roots ρ(ρ(1)) and ρ(ρ(2)).

We will now use this ambiguity to construct a word  such that
♡p
+ is infinite. This word over the four-letter alphabet {, b, c, d} is

 = dρ()dρ(ρ())d = bcbbcbc ·d ·bccbcc ·d ·cbcbb ·d.

Thus the duplication root of contains among others the three words

 = bc · d · bc · d · cbcb · d
b = bc · d · bccbc · d · cb · d
c = bcbbc · d · bc · d · cb · d,

which are square-free. We now need to recall that a morphism h is
called square-free, iff h() is square-free for all square-free words .
Crochemore has shown that a uniform morphism h is square-free, iff
it is square-free for all words of length 3, [20]. Here uniform means
that all images of single letters have the same length, which is given
in our case.

The morphism we define now is φ() :=  for all  ∈ {, b, c}.
Thus to establish the square-freeness of φ, we need to check this
property for the images of all square-free words up to length 3. These

82



3.2 Roots

are

φ(b) = bcdbcdcbcbdbcdbccbcdcbdbcdbcdcbcbd
φ(bc) = bcdbcdcbcbdbcdbccbcdcbdbcbbcdbcdcbd
φ(c) = bcdbcdcbcbdbcbbcdbcdcbdbcdbcdcbcbd
φ(cb) = bcdbcdcbcbdbcbbcdbcdcbdbcdbccbcdcbd
φ(bb) = bcdbccbcdcbdbcdbcdcbcbdbcdbccbcdcbd
φ(bc) = bcdbccbcdcbdbcdbcdcbcbdbcbbcdbcdcbd
φ(bc) = bcdbccbcdcbdbcbbcdbcdcbdbcdbcdcbcbd
φ(bcb) = bcdbccbcdcbdbcbbcdbcdcbdbcdbccbcdcbd
φ(cc) = bcbbcdbcdcbdbcdbcdcbcbdbcbbcdbcdcbd
φ(cb) = bcbbcdbcdcbdbcdbcdcbcbdbcdbccbcdcbd
φ(cb) = bcbbcdbcdcbdbcdbccbcdcbdbcdbcdcbcbd
φ(cbc) = bcbbcdbcdcbdbcdbccbcdcbdbcbbcdbcdcbd,

where, of course, the images of all words shorter than three are con-
tained in them. All the twelve words listed here are indeed square-
free as an eager reader can check, and thus φ is square-free.
Now let t be an infinite square-free words over the letters , b and

c. Then φ(pref(t)) is an infinite set of square-free words. From the
construction of φ we know that for any word z of length  we can reach
φ(z) from  by undoing duplications. Therefore φ(pref(t)) ⊆ ♡p

+,
whence also the latter set is infinite.

Thus even very simple languages can have rather complicated
roots. In the case of uniformly bounded duplication roots, though,
the regular languages are closed under the root operation.

Proposition 3.2.17. If L ∈ REG, then also ♡kp
L ∈ REG for all k ≥ 1.

Proof. If a language L is regular, then it can be generated by a regular
grammar G = (N,, S, P), which has only rules of the forms (A, B)
and (A, ) for non-terminals A and B and  ∈ ; for simplicity we
ignore the possible rule (S, λ) to generate the empty word. From this
grammar we construct another one that generates ♡kp

L.
The new grammar’s set of non-terminals is N′ = {A : A ∈ N∧ ∈

≤2k}. The rule set is derived from P in the following way. The rules
from {(A, B) : (A,B) ∈ P∧ || < 2k − 1} go in parallel to those of
P, but store the letters generated in the non-terminals’ index instead
of actually generating them. When the index reaches length 2k, the
oldest letters are finally put out, when new ones come in.

{(A,[1]B[2...2k]) : (A, B) ∈ P∧|| = 2k∧[2 . . .2k] ∈ RR((♡k)−1)}.

Only if the index would become a square of length k, then half of this
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square is deleted, instead of putting anything out.

{(A, B[1...k+1]) : (A, B) ∈ P∧|| = 2k∧[2 . . .2k] 6∈ RR((♡k)−1)}.

The rules from

{(A, B[1...k]) : (A, B) ∈ P∧|| = 2k−1∧[1 . . . k] =[k+1 . . .2k−1]}

take care of the case that upon filling the index alreadz a k-square is
produced. From the terminating rules of P we derive the sets

{(A,) : (A, ) ∈ P∧ is not a k − square}

and
{(A,[1 . . . k]) : (A, ) ∈ P∧ is a k − square} .

These do not conform with our definitnion of regular grammar, be-
cause more than one letter is generated in one step; but since al-
lowing this still keeps the language generated regular, we use this
simpler way for conciseness.
This new grammar obviously generates the words that also G gen-

erates, only leaving out all squares of length 2k that occur when
going from left to right. The argumentation that showed the conflu-
ence of (♡k)−1 in the proof of Lemma 2.4.4 also shows that in this
way all the words in ♡kp

L are reached.

The grammar constructed for ♡kp
L uses a similar idea as the al-

gorithm for deciding the question “ ∈ ♡k?,” which we gave in an
earlier article [56]. The effective closure of regular languages under
uniformly bounded duplication can be used to decide the problem of
the finiteness of the root for the uniformly bounded case.

Corollary 3.2.18. For regular languages it is decidable, whether their
uniformly bounded duplication root is finite.

Proof. From the proof of Proposition 3.2.17 we see that from a regular
grammar for a language L a regular grammar for the language ♡kp

L
can be constructed. This construction method is effective. Since the
finiteness problem is decidable for regular languages, it can then also
be decided for ♡kp

L.
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3.3 Duplication Codes

A central problem in DNA computation is to find a good encoding,
which will facilitate the desired computation but will not exhibit any
undesirable behavior. For example, strands can form secondary
structures, or strands might simply align in ways not foreseen, if code
words are not chosen carefully. A more detailed discussion of this can
be found in the current author’s work on the use of partial words for
the coding problem [52].
As mentioned earlier, duplication is a rather frequent rearrange-

ment in DNA sequences. From this comes the idea to devise a type
of code, which is robust against duplications occurring in its words.
This is what we will do for the case of uniformly bounded duplication.
After collecting some properties of k-dup primitive words, we will pro-
vide the definition, characterize the conditions under which infinite
codes of this type exist, and finally we will investigate more closely,
what kinds of languages are generated by k-dup codes.

3.3.1 k-dup Primitive Words

As the properties of primitive words are frequently used in investiga-
tions about conventional codes, also in work about duplication codes
a type of primitive words plays an important role. These are the ones
primitive or irreducible under the respective relation. In this sense
we call k-dup primitive all the words in the language RR((♡k)−1).
We now proceed to collect some properties of this type of word

and of uniformly bounded duplication roots in general. If not stated
otherwise, we assume k to be an integer greater than zero in these
investigations.
From the fact that the relation (♡k)−1 is confluent, see Lemma

2.4.4, the following property follows almost immediately.

Lemma 3.3.1. ♡kp = ♡k
p

♡kp · ♡kp.

The simpler equation ♡kp = ♡kp · ♡kp does not hold true in gen-
eral. A trivial counterexample is  = ♡1p ·  6= ♡1p · ♡1p = .

Lemma 3.3.2. If for an k-dup primitive word  there is ♡kp = , then
also ♡kp

+ =  holds.

Proof. Let ♡kp = . Then ♡kp = ♡k
p

 ♡kp = ♡kp = . For
larger powers the same principle can be applied, and consequently
we obtain by induction that ♡kp

+ = , because other words cannot
be roots due to the root’s uniqueness.
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Lemma 3.3.3. If  is a word of length k, then ♡k =∗.

Proof. The inclusion ∗ ⊆ ♡k is obvious for || = k. The other
inclusion we show by induction on the number of duplications nec-
essary to obtain a word  ∈ ♡k from . Clearly, by one dupli-
cation only  can be obtained, and it is in ∗. Now suppose
that  ∈ ∗ and  ∈ 1♡k. Then the factor [ . . .  + k − 1] to be
duplicated is a conjugate of . Therefore there is a j such that
[j + 1 . . .  + k − 1][ . . . j] =  and [1 . . . j], [j + 1 . . . ||] ∈ ∗.
Now [ . . .  + k − 1]2 = [ . . . j][j + 1 . . .  + k − 1], and thus also
 ∈∗.

By quite similar reasoning, we obtain another related result, which
shows that duplications (and just as well unduplications) preserve
periods, which divide their length.

Lemma 3.3.4. If a word  has a period ℓ, which divides k, then all
words in ♡k and in ♡kp have period ℓ, too.

Proof. For ♡kp the statement is completely trivial, because remov-
ing factors of length ℓ from a word with period ℓmaintains this period.
For ♡k we prove the claim by induction. Of course,  has period ℓ
by assumption. Now, suppose some word  has period ℓ, and a factor
 of length k is duplicated starting from position . The resulting word
is [1 . . .  + k − 1][ + k . . . ||] = [1 . . .  − 1][ + n . . . ||].
Now [1 . . . − 1] and [+ n . . . ||] are a prefix and suffix of ,
therefore have period ℓ. Since at the point of catenation they agree
on the k letters of  to both sides, also the catenation has period ℓ.
This, together with the fact that ♡k = {} for words shorter than k,
suffices to prove the claim.

Now we turn our attention to cases, where a word and some of its
powers have the same root. This is not always the case and thus has
some implications for the structure of the underlying word.

Lemma 3.3.5. If ♡kp = ♡kp for some word , then || is a multi-
ple of k.

Proof. ♡kp = ♡kp implies ♡k
p

♡kp ♡kp = ♡kp. This means that
one can get from ♡kp to ♡kp ♡kp via duplications of length k. Be-
cause every such duplication increases the word’s length by k, | ♡k

p
|

must be a multiple of k. Because also  can be reached from ♡kp
via duplications of length k, its length must be a multiple of k, too.
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For general powers ℓ with ℓ > 2 this is not true; for example,
whenever ℓ is a multiple of k there are trivial counterexamples over a
one-letter alphabet. Before we can make a more general statement,
we prove an auxiliary lemma.

Lemma 3.3.6. If [1 . . . k] is a k-square-free prefix of , then
[1 . . . k − n+ 1] is a prefix of ♡kp.

Proof. If [1 . . . k] is a square-free prefix of , then the first k-square
in  can start at position k − 2n + 2. Suppose that unduplicating
this square creates a new one starting at a position closer to the
beginning, saym. Then [m. . . k−2n][k−2n+1 . . . k−n+1][k+
1 . . .m+ n− k − 1] is a k-square.
This implies that[m. . . k−2n] is a suffix of[k−2n+1 . . . k−n+1]

and [k+1 . . .m+n−k−1] is a prefix of it, in fact [k−2n+1 . . . k−
n+1] =[m. . . k−2n][k+1 . . .m+n−k−1] =[k−n+2 . . . k+1].
But this shows that the square starting at position m was already
there in the original word, which contradicts our assumptions.

This bound is tight as shown by the example of ♡3p
bbb =

bb, where the longest 3-square-free prefix has length 6, and the
root has length 4 = 6− 3+ 1. Of course, the same reasoning applies
from the end of the word.

Corollary 3.3.7. If [k . . . ||] is a square-free suffix of , then [k+
n− 1 . . . ||] is a suffix of ♡kp.

Now we are ready to make a statement about the case where gen-
eral powers of a word have the same root as the word itself.

Lemma 3.3.8. If
♡k
p

k = ♡kp for some word  and some integer
ℓ ≥ 2, then ℓ has a period of  as divisor.

Proof. First notice that due to the uniqueness of the root, one can
undo first all duplication within the different factors  of ℓ. By
Lemma 3.3.4 this would not change the fact that k divides a period
of . Thus, without restriction of generality we can suppose that 
is k-square-free. For words shorter than k,

♡k
p

ℓ = ♡kp can never
hold; for || = k, obviously always ♡k

p

ℓ = ♡kp and also k trivially is
a period of. Therefore we can also suppose || > k in the following.
Because  is k-square-free any duplication to be undone in ℓ

must cross a border in between two of the factors . Further, we
suppose that the first k-square in ℓ involves at most the last k let-
ters of the first factor . This means that the entire word  remains

87



3 Duplication

unchanged by unduplicating this square, and thus by Lemma 3.3.6 it
remains unchanged in the whole process of arriving at ♡kp. If the
first square starts earlier, the same reasoning will work from the end
of the word, and the last factor  will remain unchanged.
The only case, where neither is true is the occurrence of a third

power  such that the central  includes the border between the
s. If has length at least 2k, then these blocks do not overlap each
other, we can just delete the initial k letters of each  and proceed
with the resulting word; this preserves squares  and also preserves
any period not longer than k. For shorter , since || > k also ℓ > 2,
and the factors  overlap. This implies that the entire word  has
period ||. Since || = k, with Lemma 3.3.4 the initial claim is proven
in this case.
Summarizing the reasoning to this point, we can now assume that

 is k-square-free, || > n, and that the first k-square in ℓ involves
at most the last k letters of the first factor . This means we can
cancel the last copy of each occurrence of this k-square within each
of the second to ℓ-th factor , and arrive at a new word (′)ℓ−1.
Since we started at the left-most k-square, according to Lemma 3.3.6
this process can be continued, until we arrive at a word ′, which is
shorter than k – under the assumption

♡k
p

ℓ = ♡kp this must be
possible, because we must be able to arrive at a word of length only
||. If the length of ′ is a divisor of k, then (′)ℓ−1 has a period
dividing k, and by Lemma 3.3.4 also ℓ−1, which proves our initial
claim.
If the length of ′ is not a divisor of k, there still must be an k-

square in (′)ℓ−1. Since it has period k and also period |′| < k, by
the Theorem of Fine and Wilf 1.1.1 ′ has period gcd(k, |′|), which
by definition divides k, and again our initial claim follows with Lemma
3.3.4.

3.3.2 k-dup Codes

We now proceed to define the central notion of this section, the k-
duplication code, or short k-dup code. It is closely oriented after
the definition of a conventional code, only instead of the catenation
of words we investigate the catenation of their k-duplication sets.
Recall that a set of wordsW is a conventional code, if for two integers
n,  and words 0, . . . , n, 0, . . . ,  ∈W the equation

01 . . . n = 01 . . . 
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implies that n =  and all  =  for 0 ≤  ≤ n. Analogously, in the
sense described above, we call W an k-dup code, if

♡k
0
♡k
1
. . . ♡k

n
∩ ♡k

0
♡k
1

. . . ♡k

6= ∅

implies that n =  and  =  for 0 ≤  ≤ n. From the definition it is
clear that every k-dup code is also a code in the conventional sense,
because always  ∈ ♡k. The converse is not true. However, one
can easily see that there is a stronger relation to conventional codes.

Proposition 3.3.9. A set of words W is an k-dup code, if and only if
W♡k is a conventional code.

Proof. Suppose there is an k-dup code W such that the set W♡k

is not a code. This means there are two integers n,  and
words 0, . . . , n, 0, . . . ,  from the set W♡k such that 01 · · ·n =
01 · · ·. But this implies that ♡k

0
♡k
1
. . . ♡k

n
∩ ♡k

0
♡k
1

. . . ♡k

6= ∅,

and because W is an k-dup code, n =  and all  =  for 0 ≤  ≤ n.
The converse implication is true by definition.

This also resolves some possible doubts about the definition of
k-dup codes. According to the definition, the sequence of words
01 . . . n such that  ∈ ♡k

0
♡k
1
. . . ♡k

n
must be unique for any word

; this, however, still might admit some ambiguity as to the actual
factorization of . Different combinations of words from the sets ♡k


might provide factorizations of . Proposition 3.3.9 shows that this
is impossible, because if W♡k is a code, then all factorizations over
this set are by definition unique.
The conventional code thus associated to an k-dup code we will

call its associated code. It is worth noting that it is never a prefix or
suffix code, if the k-dup code is non-trivial, i.e. it contains at least
one word longer than k. The definition of k-dup code can be given
also in a stronger form, considering two lists of equal length only. The
necessary property is stated in the following proposition.

Proposition 3.3.10. For any set of words W that is not an k-dup
code, there are a natural number m and words 0, 1, . . . m and
0, 1, . . . m all from W such that ♡k

0
♡k
1
. . . ♡k

m
∩♡k

0
♡k
1

. . . ♡k
m
6= ∅

and not  =  for all  ≤m.

Proof. For any set of words W, which is not an k-dup code, there
are by definition natural numbers k and , and there are words
0, 1, . . . n and 0, 1, . . .  all from W such that

♡k
0
♡k
1
. . . ♡k

n
∩ ♡k

0
♡k
1

. . . ♡k

6= ∅
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and not  =  for all  ≤min{k, }. Now we set m := n+  and looking
at the set

♡k
0
♡k
1
. . . ♡k

n
♡k
0
♡k
1

. . . ♡k

∩ ♡k

0
♡k
1

. . . ♡k

♡k
0
♡k
1
. . . ♡k

n
,

which is also non-empty, we see that the proposition’s statement is
true.

Example 3.3.11. As a first example of an k-dup code, we look at the
set {b}, which is a 2-duplication code. Clearly (b)♡2 = (b)∗.
Thus any catenation of words from (b)♡2 has two consecutive 
exactly at the borders between the catenated words; this provides
the unique factorization of these catenations.

An k-dup code W is maximal, if for all words  from + \W the set
W ∪ {} is not an k-dup code. The 2-duplication code {b} from
Example 3.3.11 is not maximal, as we can add, for example, the word
bbbb to it, and the result is still a 2-duplication code.

Example 3.3.12. In a trivial manner, {, b} is a maximal k-dup code
over two letters for any k > 1, because no duplication is involved
and {, b} is a maximal conventional code generating the entire set
∗. In the same way any finite maximal conventional code with its
longest word of length n is a maximal k-dup code for any k > n (see
also Propostion 3.3.14 further down).

In the case of conventional codes, any code can be made maximal
by subsequent, possibly infinite addition of more words [10]. The
same reasoning works also in the case of duplication codes.

Proposition 3.3.13. Every k-dup code over an alphabet  is contained
in a maximal k-dup code over .

Proof. We consider the partial order on all k-dup codes created by
set inclusion. By Zorn’s Lemma suffices to show that any chain in
this partial order has a least upper bound, which is again an k-dup
code. Clearly, the union of all the chain’s elements is its least upper
bound. Let us call it W.
IfW were not an k-dup code, then there would be a positive integer

k and words 0,1, . . . ,n,′0,
′
1
, . . . ,′

n
from W, such that

♡k
0
♡k

1
. . .♡k

n
∩′♡k

0
′♡k

1
. . .′♡k

n
6= ∅.

Since W is the union of all elements of the chain, there is a maximal
element in this chain containing all these  and ′ . The chain, how-
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ever consists only of k-dup code, and thus this situation is impossible,
also W is an k-dup code.

We now compile some properties of words contained in k-dup
codes. The first one is obvious, because for words shorter than k
the duplication language generated contains only the original words
itself.

Proposition 3.3.14. A code of words all shorter than k is an k-dup
code.

Further, for every word  of length k, we have  · ∈♡k. There-
fore containment of  in an k-dup code would result in two distinct
factorizations of . Thus we can state a condition that necessarily
makes a set of words not an k-dup code.

Proposition 3.3.15. An k-dup code cannot contain any word of length
k.

Similarly, for every word  = km with m > 0, there exists an
integer n > 1, for example n = 1+ cm(m,k), such that n ∈♡k.

Proposition 3.3.16. An k-dup code cannot contain any word longer
than k from the set + for a letter .

So the only words really interesting are the ones of lengths greater
than that of the duplications and with at least two letters. Of course,
the duplication roots of the words involved play an important role.

Proposition 3.3.17. An k-dup code cannot contain two words with the
same k-duplication root.

Proof. This is a direct consequence of the confluence of uniformly
bounded duplication, which was stated in Lemma 2.4.2.

After many conditions for a set of words not to be a code, we now
state a property that makes a set of two words an k-dup code in a
non-trivial way.

Proposition 3.3.18. If , ,  and  are k-square-free and longer
than k, then {,} is a k-dup code.

Proof. If , ,  and  are all k-square-free and longer than k,
then all words in {,}∗ are k-dup-primitive. Thus every such word
01 . . .n is the unique root of any word in ♡k

0
♡k

1
. . .♡k

n
, if all 

are from the set {,}. Suppose now that some word has two such
factorizations into words from {,}♡k. If they are distinct, then
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they result in two distinct duplication roots as just exposed. This is in
contradiction to the uniqueness of the root. Therefore no word can
have two distinct factorizations of this type, and {,} is an k-dup
code.

In a straight-forward manner, the argumentation from the proof of
Proposition 3.3.18 can be generalized to any number of words. We
state this only for a finite number, though also an infinite set of words
can be treated the same way.

Corollary 3.3.19. LetW = {0,1, . . .k} be a set of words all longer
than k and such that all words in W2 are k-square-free. Then W is an
k-dup code.

3.3.3 Infinite Duplication Codes

Of course, there are infinite conventional codes. After Proposition
3.3.9, however, it is not self-evident that also infinite duplication
codes exist. As we will see, this depends on the size of the alpha-
bet and on the length of the duplications. We start with a negative
result, i.e. with a case where no infinite dup code exists.

Proposition 3.3.20. There is no infinite 1-dup code over a two-letter
alphabet.

Proof. LetW be a 1-dup code over the alphabet {, b}. Suppose that
W contains a word  that starts with  and ends with b. If there is
another word  from W with the same properties, then let n be the
number of changes from  to b in  and let  be the same number for
.
We now start from the word (b)(n·) and duplicate the initial  so

often, that the initial block of  is as long as the longer one from  and
. Then the same is done for the first block of b etc. comparing the
length of these blocks in the entire word generated to the respective
lengths in  and n. Clearly the resulting word is in both ♡1 and
♡1. Thus W is a code only if  =, and any 1-dup code can contain
at most one word starting with  and ending with b.
For words starting with b and ending with  the argumentation

is the same, for words starting and ending with the same letter (
or b), a very similar line of thought works. As there are only four
possibilities of different first/last letter combinations, and for every
one at most one word can be in W, no 1-dup code can be infinite.
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From the proof we immediately see an even tighter bound for the
size of a 1-dup code. Namely that over a two-letter alphabet there is
no 1-dup code consisting of more than four words, because there are
only four possible combinations of first and last letter. This, however,
is not yet optimal. In fact, the maximum number of words in a 1-dup
code is only one – considerations only slightly more intricate than
above show this.

Corollary 3.3.21. Over a two-letter alphabet there is no 1-dup code
consisting of more than one word.

Proof. An argumentation analogous to that of the proof of Proposition
3.3.20 works for any two words having a change of letter inside. Only,
if they do not start and end with the same letters the construction
gets slightly more intricate, some “padding" at the start and end
may be necessary.
This leaves only words over just one letter as candidates for a sec-

ond word in a 1-dup code. But by Proposition 3.3.15 neither  nor b
are possible, longer words are excluded by Proposition 3.3.16.

The situation changes, when we increase the size of the alphabet.
Already three letters suffice to construct an infinite code.

Proposition 3.3.22. Over a three-letter alphabet, there exist infinite
1-dup codes.

We prove this by providing an example for such a code.

Example 3.3.23. The language W = (b)+c is an infinite 1-dup code.
First off, we note the fact that the duplication of a single letter can
never change the number of letter-changes (from  to b,  to c etc.)
in a given word. From this, a 1-dup code factorization for every word
 from W♡k can be found by splitting it after every block of c. Fur-
ther, the number of changes from  to b uniquely determines the
word from W, from which the respective factor originated.

Proposition 3.3.24. There exist infinite k-dup codes for k ≥ 2.

Again, we provide examples for such codes. The first one uses
three letters, the second one only two. Thus, for duplications longer
than one there is not the same distinction between two- and three-
letter alphabets as exhibited by Propositions 3.3.20 and 3.3.22.

Example 3.3.25. Let W be the set of k-dup-primitive words over the
alphabet {, b}, which are longer than k. Then the set U := c ·W · c
is an infinite k-dup code. It is clearly infinite. Further, all the sets
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♡k for a  from U are disjoint, because the root is unique. Finally,
all words begin and end with a c, and thus their catenation has two
consecutive c at the border. Because duplications of length greater
than one cannot create two consecutive c starting from a word in U,
the factorizations are unique in a similar manner as above in Example
3.3.11, and U is an k-dup code.

Example 3.3.26. The language W = (bb)+ is a 2-dup code. To see
this, consider the effects of possible 2-duplications on a word from
W:  → , b → bb, and bb → bbbb. All of them preserve
the number of blocks of the same letter of length greater than one
in the original word – for this, one needs to look also at the letters
immediately preceding and following the duplicated factor.
Because in W+ all W-factors of a word start with  and this is

the only occurrence of , the W-factorization is unique. Further,
for every positive integer the word from W having this number of
bb-blocks is unique. Thus it is easy to reconstruct from any word
in W♡2 its unique 2-dup factorization by separating the word at the
beginning of every (maximal) block of , which is longer than one.

Summarizing the results of this section and adding a few trivial
considerations for one-letter alphabets, we obtain the following the-
orem, which fully characterizes the conditions under which infinite
duplication codes exist.

Theorem 3.3.27. There exist infinite k-dup codes over an n-letter al-
phabet, if and only if k, n ≥ 2 or if k = 1 and n ≥ 3.

Since all the examples for infinite k-dup codes provided in this sec-
tion have been regular, it is worth stating that this is not necessarily
so. We give an example for a non-context-free k-dup code over four
letters. This leaves open the question, whether such codes exist also
over two or three letters. Again, the answer might also be parame-
terized by the duplications’ length.

Proposition 3.3.28. For any k ≥ 1, there exists an infinite k-dup code
which is not regular.

Proof. Let T3 be the infinite set of all square-free words over a three-
letter alphabet, which is known to be a non-context-free language
[79]. However, the still non-context-free language W = {d}T3{d} is
an k-dup code for every n ≥ 1.
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3.3.4 Languages Generated by Duplication Codes

An interesting concept in relation with codes is the denseness of the
languages they generate. Informally speaking, denseness means
that any word appears as a factor of some word in the generated
language. Recall that a language L ⊂ ∗ is called dense, if for all
words  ∈ ∗ we have ∗∗ ∩ L 6= ∅.
The constructions used to prove that the languages generated from

one word by general duplication [92] and by (non-uniformly) bounded
duplication [56] show that in most cases those languages are also
dense; for example the occurrence of a factor bc sufficed to guaran-
tee this over the corresponding three-letter alphabet. For uniformly
bounded duplications, however, these construction techniques can-
not be applied.

Proposition 3.3.29. There exists an infinite k-dup code W, such that
(W♡k)∗ is not dense.

Proof. As shown in Example 3.3.25, the language W = cUc ⊆
{, b, c}∗ is an infinite k-dup code, where U is the set of k-dup prim-
itive words over {, b}. Following the argumentation showing that
this is so, we also see that words from (W♡k)∗ do not contain any
factor ccc. Thus (W♡k)∗ is not dense.

On the other hand, density of W, or even of W∗ guarantees the
density of (W♡k)∗. These observations raise the question, whether
there is an k-dup code W, such that W∗ is not dense, but its associ-
ated language (W♡k)∗ is dense. If we require onlyW not to be dense,
then there are trivial solutions like  itself, which is an k-dup code for
any n > 1 and generates entire ∗.
The most prominent result concerning conventional codes in this

respect is that density is given if and only if a code is maximal [10].
We now present two somewhat contrasting results, the first showing
that there are always infinitely many k-dup primitive words not in
the root of the language; then we will see that this still allows the
languages generated to be dense.

Proposition 3.3.30. For all k-dup codes W, the set ♡k \ ♡k
p

(W♡k)∗ is
infinite.

Proof. First we notice that the set ♡k of all k-primitive words is always
infinite. Thus, if ♡k

p

(W♡1)∗ is not infinite, the proposition is true. In
the contrary case, ♡k

p

(W♡1)∗ contains an infinite set U, which con-
sists of words longer than 2n + 2. For such a word  we now look
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at the words  = [1 . . .
j

||
2

k

] and  = [
j

||
2

k

+ 1 . . . ||], which are
both k-dup primitive, just as .
If there existed words 1,1 ∈ (W♡k)∗ such that ♡kp1 =  and

♡kp1 = , then also 11 would be in (W♡k)∗. Then by the con-
fluence of uniformly bounded duplication, see Lemma 2.4.2, there
would also exist words 2,2 ∈ ∗ such that 2 ∈ ♡k ∩ ♡k

1
and

2 ∈ ♡k ∩ ♡k
1
. But this implies that ♡k♡k ∩ ♡k 6= ∅. There-

fore for at least one of  and  no word can be in W that has this
root, otherwise W would not be an k-dup code. Neither can this word
be composed by shorter ones, the same argumentation would apply.
This provides us with one word in the set ♡k \ ♡k

p

(W♡k)∗.
Thus it remains to construct an infinite sequence of such words

providing us with pairwise different words from ♡k\ ♡k
p

(W♡k)∗. For an
infinite k-dup-code W, already ♡kp

W is infinite by Proposition 3.3.17.
Thus we can find an infinite sequence ()∈N of words in ♡kp

W such
that always || > |−1|+ 2, which satisfies the requirements stated.
For a finite set W, we pick a word  ∈W, which has no period that

divides k. Then by Lemma 3.3.8 the sequence of  := 2n works.
If all words in W have periods dividing k, then we take  := ()2n

for such a word  ∈ W. Now, if  still had a period dividing k, then
n+1 could be reduced via k-unduplications to , and consequently 
cannot be in an k-dup code. Therefore  has no period dividing k,
and can be used just as  above.

Proposition 3.3.31. There exists an infinite 1-dup code W over any
alphabet  with three or more letters, such that (W♡1)∗ is dense.

Proof. Recall that ♡1 is the language of all 1-square-free words. Now
we choose an arbitrary non-empty, unbordered word  from ♡1 with
[1] = b, [||] =  and || > 1. We set ♡′

1
:= ♡1\(∗∗∪∗b).

Note that ♡′
1
is only infinite over an alphabet with three or more

letters.
Then W := ♡′

1
· is a 1-dup code, because ♡′♡1

1
and ♡1 are dis-

joint. Thus any word from (W♡1)∗ is uniquely factorized into words
from W♡1 by separating them after any occurrence of a factor from
♡1. Note that different occurrences of  cannot overlap, because
the word is unbordered.
It remains to show that (W♡1)∗ is dense. Intuitively speaking, ♡1

is the language one obtains from ∗ by condensing all blocks of the
same letter within a word to length one. From these words any other
word can be obtained by doing the appropriate 1-duplications. There-
fore it suffices to show that for all  ∈ ♡1 we have ∗∗ ∩W∗ 6= ∅.
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For words  not containing a factor  this is true, because they are
already contained in W.
We first look at words not starting with . For such a word  not

containing one factor , there is a factorization  = 12. Here it is
crucial to note that 2[1] 6= , otherwise  would contain a 1-square,
the same for 1[|1|] 6= b. But now we have 1,2 ∈W, and thus
1,2 ∈ W∗ with a factor . For words with more occurrences of
factors  analogous factorizations can be found.
Thus, all 1-square-free words not starting with  are prefixes of

words in W∗. With the observation that words  are factors of the
corresponding  we conclude the proof.

Another interesting questions is, whether the step from W to
(W♡k)∗ increases the complexity of the language. For regular lan-
guages no increase in complexity can be observed.

Theorem 3.3.32. The language W♡k is regular for every regular lan-
guage W and n ≥ 1.

Proof. Let W ⊆ ∗ be a regular language and let W =W1 ∪W2, where
W1 = { ∈ W | || ≤ k}, and W2 = W \W1. Obviously, W♡k = W♡k

2
∪

W1. Assume that W2 is recognized by the DFA (deterministic finite
automaton) A = (Q,, δ, q0, F). We construct the DFA

A′ = (Q′,, δ′, 〈q0, λ〉, F′),

where

Q′ = {〈q, 〉 | q ∈ Q, ∈ ∗, || ≤ k}
F′ = {〈q, 〉 | q ∈ F,  ∈ ∗, || = k}

and the transition mapping δ′ is defined as follows:

δ′(〈q, 〉, ) =
�

〈δ(q, ), 〉, if || < k
〈δ(q, ), Sƒk()〉, if || = k.

Here Sƒk(z) denotes the suffix of z of length k. Clearly, the automa-
ton A′ recognizes the same language as A does, namely W2.
We now recall a result from earlier work [56], which is very useful

for the last part of our proof. For two words , y over an alphabet
 such that y ∈ ♡k and p a positive integer, we write  ./(p,n) y if
 = t, |t| = p− 1, || = n and y = t. Then the following result is
known:
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3 Duplication

Proposition 3.3.33 ([56]). If  = 1 ./(p1,n) 2 ./(p2,n) 3 ./(p3,n)
. . . r ./(pr ,n)  for some p, 1 ≤  ≤ r, then  = y1 ./(q1,n) y2 ./(q2,n)
y3 ./(q3,n) . . . yr ./(qr ,n)  holds for some q1 ≤ q2 ≤ . . . ≤ qr. Further-
more, for each  ∈ [r − 1], either q = q+1 or q+1 − q > n holds.

By this, if one adds a loop labeled by  to any state 〈q, 〉 ∈ Q′ with
|| = k, one gets an automaton (not necessarily deterministic) which
accepts the language W♡k

2
and we are done.

Since the family of regular language is closed under Kleene clo-
sure, we obtain as an immediate corollary a statement about the
languages generated by regular k-dup codes.

Corollary 3.3.34. The language generated by a regular k-dup code
W, k ≥ 1, is still regular.
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3.4 Closure of Language Classes

3.4 Closure of Language Classes under
Duplication

In some of the earlier work on special cases of idempotency rela-
tions, rather than their effect on single words their effect on entire
languages was studied. Namely Propositions 2.2.7 and 2.2.8 in Sec-
tion 2.2.4, which deal with insertion and deletion, in their original
statements establish closure properties of the class of regular lan-
guages; i.e. the rewrite relations ./1

0
and ./0

1
were shown to preserve

regularity. We now investigate the same topic for the case of dupli-
cation. The results will concern mainly bounded duplication.

3.4.1 Closure of Regular Languages

We start out with the closure of regular languages. Here the size of
the alphabet will play an important role, and first we treat the three-
letter case, where closure is not given in most of the cases. All results
for this alphabet size also carry over to bigger alphabets.
It is known that the 4-bounded duplication closure of the word bc

is not regular [58]. As one can see from the original proof, duplica-
tions longer than 4 do not affect the construction used, and there-
fore the result extends to longer bounds. Thus the class of regular
languages is not closed under n-bounded duplication for n ≥ 4, since
singular sets are of course regular.

Proposition 3.4.1. For n ≥ 4 the class of regular languages is not
closed under n-bounded duplication.

On the other hand, it is trivial to see that 1-bounded duplication
preserves regularity: the only possible change in the original word is
that every letter  can be blown up to any word from +. We now
take a look at the two cases in between, that is length-bounds of 2
and 3.
We now fix some notation, which will be convenient in the proof

that follows. For a right-syntactic congruence ∼L we denote the set
of all possible right contexts of a word  by ∼L() := { :  ∈ L}.
By []∼L we denote the congruence class of ; notice that for all
1, 2 ∈ []∼L we have ∼L (1) =∼L (2).

Proposition 3.4.2. The class of regular languages is closed under 2-
bounded duplication.

Proof. Let L be a regular language, and ∼L the corresponding right-
syntactic congruence. The right-syntactic congruence ∼L♡≤2 we will
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3 Duplication

denote more simply by ∼. We will show that the number of congru-
ence classes of ∼ is bounded by a function of the number of congru-
ence classes of ∼L.
First notice that always (∼L())♡≤2 ⊆ ∼(), i.e. if  is a possible right

context of  in L, then all words in ♡≤2 are possible right contexts
of  in L♡≤2. If the two sets are not equal, this can be caused only by
some duplication transgressing the border between  and . Dupli-
cations of length one cannot do this, thus the only possibility is one
of length two affecting the last letter of  and the first letter of .

If the two letters are the same, say , then the result will be 4,
which could have been obtained also by duplicating twice the  in ,
so the result is in ♡≤2. If the two letters are distinct, say  and b,
then the result of the duplication will be bb. If the following letter
in  is an , then we could have obtained the same by duplicating
the prefix b of , so the result is in ♡≤2.

Otherwise the result will be bbc for some letter c different from
. The resulting right context is not in ♡≤2, so in this case a new
congruence class for  is created in ∼. More duplications on the right
side will not lead to new classes, because now we have bb following
the final  of . The number of such constellations of two different
letters at the border with a different one from the first one following
is bounded by the total number of letters in the alphabet. Thus ev-
ery congruence class of ∼L results in a finite number of congruence
classes for ∼, except possibly for the one of words not being a prefix
of a word in L.

Therefore it remains to show that the , which are not prefixes of
a word in L but are prefixes of a word in L♡≤2, do not generate an
infinite number of new congruence classes. So let  ∈ L♡≤2. If there
exists ′′ that  ∈ ′♡≤2 and  ∈ ′♡≤2, then we are done. Otherwise
in the generation of  from ′′ there is a duplication transgressing
the border between the two words.

Similarly as above, this is interesting only in the configuration c|b,
where | denotes the border between ′ and ′ (or rather between
the two intermediate words generated from them). The result of this
duplication is cb|b. Let us call the word on the left ′′. No fur-
ther duplications transgressing the border can be necessary, since
(cb)♡≤2b♡≤2 = (cbb)♡≤2. Thus for all words  here we have ei-
ther []∼ = [′]∼ or []∼ = [′′]∼. Thus also here the increase of
the index of ∼ compared to ∼L preserves finiteness, and thus the re-
sulting language is regular by Theorem 1.2.5, if the original language
was regular.
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3.4 Closure of Language Classes

It appears possible to extend this proof technique to 3-bounded
duplication under use of the fact that over two-letters the longest
square-free word has length 3. While we leave this case open here,
over an alphabet of only two letters things are not as complicated. To
see this we first state a result that relates bounded and unbounded
duplication. This will then allow us to state the closure of regular
languages under these variants of duplication.
For the remainder of this section, → will denote the derivation re-

lation of the string-rewriting system R = { → , b → bb, b →
bb, b→ bb}, which generates the language ♡≤2 for any word
 ∈ {, b}.

Lemma 3.4.3. For every word  ∈ {, b}∗ we have b
∗→ bbb,

b
∗→ bb, and b

∗→ bb.

Proof. We prove this statement by induction on the length of . For
|| = 0 the three derivations

b
b→bb→ bb

b→bb→ bbb = bbb

b
b→bb→ bb

→→ bb = bb

b
b→bb→ bb = bb

show us that the lemma holds. So let us suppose it holds for all
words, which are shorter than a number n. Any word  of length n
has a factorization either as  or b for a word  of length n−1. For
this word  the Lemma holds by our assumption. But then for  = 
the derivations

b
∗→ bb

b→bb→ bbb = bbb

b
∗→ bb

→→ bb = bb

b
∗→ bb = bb

and for  = b the derivations

b
∗→ bbb

b→bb→ bbbb = bbb

b
∗→ bbb

→→ bbb = bb

b
∗→ bbb = bb

show us that the lemma holds also for  and thus for all words.

Proposition 3.4.4. Over an alphabet of two letters we have ♡≤n =
♡≤2 and consequently ♡ =♡≤2 for all words  and for n ≥ 2.
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3 Duplication

Proof. From Lemma 3.4.3 we know that b
∗→ bb holds for every

word , and applying this to the initial factor b in b we obtain
b

∗→ bb. Just interchanging the letters  and b everything still
is valid, and thus we see that also b

∗→ bb holds.
Now we prove that 

∗→ . If  ∈ ∗, then the statement is
obviously true. Otherwise there is at least one b in , and therefore 
can be factorized as  = mb for some word  and an integerm ≥ 0.
Now the derivation

 = m(b)
Lemma 3.4.3→ mbb

∗→ mbmb = 

shows that the statement above holds. Interchanging the letters
again provides us with the dual statement bb

∗→ bbbb.
Because any word z longer than 1 has to start with either b, b,

, or bb, this shows that we can always obtain by duplications of
length at most 2 the word zz from z and thus ♡≤n ⊆ ♡≤2. On
the other hand, every duplication relation ♡≤n for n ≥ 2 includes
the relation ♡≤2 and so does ♡. This suffices to prove that for all
n > 1 we have ♡≤n = ♡≤2, and ♡ = ♡≤2 immediately follows
from this, because in any derivation the length of duplications used
is bounded.

Combining the results of this section we are now able to state the
closure of regular languages under duplication.

Proposition 3.4.5. The class of regular languages over two-letter al-
phabet is closed under n-bounded duplication and under general du-
plication.

Proof. Proposition 3.4.2 states that regular languages are closed un-
der 2-bounded duplication over any alphabet, and from Proposition
3.4.4 we see that in the two-letter case for any n > 1 the n-bounded
and general duplication operations are equivalent to the 2-bounded
one.

3.4.2 Closure of Context-Free Languages

When we speak about context-free languages, there is no difference
between alphabets of size 2 and 3. It is already known that lan-
guages ♡≤n are always context-free [58]. By further refining the
push-down automaton used in that proof, we can establish the clo-
sure of context-free languages under bounded duplication.
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3.4 Closure of Language Classes

Proposition 3.4.6. The class of context-free languages is closed under
bounded duplication.

Proof. We will show this by constructing a Push-Down Automaton in a
way rather analogous to the one used in earlier work for the bounded
duplication closure of a single word [58]. There the PDA reduces the
results of duplications  to their origin  and matches the reduced
string against the original word. Here, we also have to simulate a
second PDA accepting the context-free input language. This can be
done, because of the two components reducing duplications and ac-
cepting the original language, the latter one does not need to access
the stack ever, while the first one is working. With this sketch of the
proof idea we now proceed to the technical details.
We start out from a PDA M, which accepts the language L. Let the

PDA be M = [Q,,, φ, qo,⊥], where Q is the set of states,  the tape
alphabet, and  the stack alphabet. φ : Q× ( ∪ {λ})× → Q× ∗ is
the state transition function; i.e. we allow transitions without reading
input and we always take the topmost symbol off the stack replacing
it by an arbitrary number of stack symbols. q0 is the start state, and
⊥ marks the stack’s bottom. The acceptance mode does not really
need to be specified, since any common acceptance condition will
carry over to the new PDA.
We now define the PDA A, which accepts L♡≤n. The state set is

S := Q × ( ∪ )≤n × ≤n, where  := { :  ∈ } is a marked copy
of the tape alphabet. States s ∈ S we will denote in the way s = q|


,

where q ∈ Q,  ∈ ( ∪ )≤n is called the match, and  ∈ ≤n the
memory; then q0|λλ is the start state of S. The stack alphabet is
′ :=  ∪ ( ∪ )≤n. The tape alphabet  and bottom-of-stack marker
⊥ are as for M. What remains to be defined is the transition function
δ. We first define the part

δ(q|λ
λ
, , γ) := (q′|λ

λ
, α) where φ(q, , γ) = (q′, α) (3.2)

for  ∈  ∪ {λ}, γ ∈ , and α ∈ ∗. We see that when guess and
memory are empty, A works just as M; we will see that these are
the only transitions changing the component from Q of A’s states.
Thus the simulation of M and the undoing of duplications, which uses
match and memory leaving the component from Q unchanged, are
done more or less independently. The next kind of transition makes
a guess that the following letters on the input tape are the result of
a duplication. Transitions

δ(q|

, , γ) := (q|


, γ)
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3 Duplication

are defined for any words  ∈ ( ∪ )≤n and , ∈ ≤n. Whatever is
in the match is put on the stack to continue processing later. Note
that the word  is put on the stack as a single symbol.
Next A checks whether the input continues with . This is done

by matching the guess twice against the input, which is read, the first
time underlining it in the guess, then undoing this. When both are
matched, our PDA should continue as if there was one occurrence of
 left on the input tape. However, both are already read. Thus we
put into the memory and read from there as if it was the input tape.
Since in this construction the contents of the memory are thought
to be situated in front of the input tape contents, nothing is ever
read from the input tape, while the memory is not empty. For both
situations all transitions are defined in parallel.
The variables used in the definition are quantified as follows: q ∈ Q,

 ∈ , ,, z ∈ ∗, γ ∈ ′, β ∈ , and  ∈ ∗ · ∗ ∪ ∗ · ∗ with
|| ≤ n. Further, all catenations of words and letters are supposed to
be no longer than n, and underlining a word from ∗ shall signify the
corresponding word over  obtained by underlining all the individual
letters.

δ(q|zλ , , γ) := (q|zλ , γ) and δ(q|z , λ, γ) := (q|z , γ)

δ(q|λ , , γ) := (q|λ , γ) and δ(q|, λ, γ) := (q|

 , γ)

δ(q|zλ , , γ) := (q|zλ , γ) and δ(q|z , λ, γ) := (q|z , γ)

δ(q|zλ , ,) := (q|
z
, λ) and δ(q|z, λ,) := (q|z, λ)

δ(q|zλ , , β) := (q|λ
z
, β) and δ(q|z, λ, β) := (q|λz, β)

Finally, also the simulation of M must be possible, when the mem-
ory is not empty. Thus for  ∈  we define the analogue to transitions
defined in 3.2 for reading from the tape:

δ(q|λ

, λ, γ) := (q′|λ


, α) where φ(q, , γ) = (q′, α).

There are no other transitions than the ones defined above. We
now prove that L♡≤n ⊆ L(A). For this, one observation is essential,
whose truth should be immediately comprehensible after what we
have already said about the way that A works.

Lemma 3.4.7. If from a state q|
λ
with  next on the working tape

and γ on the stack there exists an accepting computation for A, then
from q|


with  next on the working tape and γ on the stack there
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3.4 Closure of Language Classes

also exists an accepting computation.

With this we can prove L♡≤n ⊆ L(A) by induction on the number
of duplications used to reach a word  ∈ L♡≤n from a word  ∈ L.
While neither  nor the number need to be unique, they both must
exist for all words in L♡≤n. So let  be a word such that  ∈ ♡≤n via
k + 1 duplications. Then there exists a word ′ reachable from  via
k duplications such that ′ ♡≤n.
Let us suppose that all words, which can be generated by k du-

plications from words in L, are accepted by A; then ′ ∈ L(A), and
there exists an accepting computation of A for ′, let us call it
. Further let , ℓ be integers such that the duplication of the fac-
tor of length ℓ starting at position  in ′ results in , i.e.  =
′[1 . . . −1]′[ . . . + ℓ−1]2′[+ ℓ . . . |′|]. Obviously A can on input
 follow the computation  on the prefix ′[1 . . . −1]. Let us call the
configuration reached in the step before reading the next input letter
ξ and let its state be s. Then in s the memory is empty, otherwise A
would not read from the input tape.
Now instead of following  further, we guess the duplication of

′[ . . . + ℓ− 1] and reduce it in the manner described above. At the
end of this process we will have reached a state equal to s except
for the fact that its memory contains ′[ . . .  + ℓ − 1]. On the tape
we have left ′[ + ℓ . . . |′|]. By Lemma 3.4.7 there is an accepting
computation for this configuration if there is one for ξ. Since  is
such an accepting computation, also  is accepted by A.
Further, A can obviously simulate any computation of M and thus

L(M) ⊆ L(A), i.e. all words reachable by zero duplications are in L(A).
Thus also the basis for our induction is given and we have L♡≤n ⊆
L(A).
We do not prove in detail that L(A) ⊆ L≤n. The two parts of A,

the one deterministically reducing duplications and the one simulat-
ing the original PDA M work practically independently, as the corre-
sponding state sets are disjoint and separated by the match being
filled or not. From these facts L(A) ⊆ L≤n should be comprehensible
rather easily.

Of course, the same construction works for any finite set of factors
that can be duplicated, and we immediately obtain a corollary.

Corollary 3.4.8. The class of context-free languages is closed under
the operation of uniformly bounded duplication.

For general duplication this proof technique does not apply, be-
cause over three letters there is no n such that (bc)♡ = (bc)♡≤n.
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3 Duplication

In fact, n-bounded duplication grows more powerful with every in-
crease of n. Here we will use the following two notions: a word  is
square-free, if it does not contain any non-empty factor of the form
 = 2;  is circular square-free, if the same holds true for  writ-
ten along a circle, or equivalently if  contains no square shorter
than itself.

Proposition 3.4.9. For two integers m and n with 17 < m < n the
inclusion (bc)♡≤m ⊂ (bc)♡≤n is proper.

Proof. First we show that for every square-free word  over three let-
ters starting with bc there exists a word , such that  ∈ (bc)♡≤k
for k ≥ 4. This word is constructed from left to right in the following
manner. The first three letters are bc and thus do not need to be
constructed.
The fourth letter is created by going from the third letter left to

the last occurrence of this desired letter. Since bc is a prefix of the
word all three letters do have such an occurrence. Now the factor
from this rightmost occurrence to the third letter is duplicated. In
this way the fourth letter of the new word becomes the desired one.
Then we move to the fifth letter, obtain it by duplicating the factor
reaching back till its rightmost occurrence, and so on.
The last occurrence of any letter in the part of  already con-

structed can be at most four positions from the last, because there
are only two more different letters and the longest square-free word
over two letters has length three. Of course, if in some step more
than one letter of  is produced, the process can advance to the next
wrong one without further duplications.
We will illustrate this construction with a short example. From bc

we construct bcbcb as a prefix. Underlining signals the factor du-
plicated to obtain the following word, the horizontal bar signals the
end of the prefix of bcbcb constructed at the respective point.
bc→ bcb|c→ bcb|bcbc→ bcbcb|bcbc
We now establish some bounds for the number of additional sym-

bols produced. Since bc is already there, || − 3 letters need
to be constructed. In every step at most 2k − 1 letters of  can
be constructed, because  is square-free; thus at least one let-
ter is added to . At the same time at most 2k − 1 letters are
added to , since no useless duplications are done. Thus we have
|| − 3 ≤ || ≤ (|| − 3)(2k − 1). Of course, every circular square-free
word is square-free and can be constructed in this way, too. Starting
from lengths of 18, such a word always exists [21].
Now we construct in this way a circular square-free word  of
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length n as a prefix of a word ′ in (bc)♡≤n. We can expand this
prefix to  in − 1 steps for any given  ≥ 1 by the rule → , so
all ′ are in (bc)♡≤n. Further,  contains no squares shorter than
2n, because is circular square-free. Thus for constructing the same
prefix in (bc)♡≤m also the bounds ||−3 ≤ || ≤ (||−3)(2m−1) for
the corresponding suffix  apply. For big enough  the shortest such
 will be longer than ′. Thus such a ′ cannot be in (bc)♡≤m,
while it is in (bc)♡≤n.
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Concluding Thoughts

Lately many new theoretical models of computation have either been
inspired by observation of one or more phenomena occurring in bio-
chemistry, or even state as their primary objective the proposal of
ways to design a computing device working on a molecular level.
Also duplication languages are a mathematical construct that origi-
nates from a behavior of DNA strands.
This does not mean that our investigations had in any way as their

objective the construction of of a biochemical computing device —
rather we have defined an idealized version of the naturally occur-
ring duplication: it can act anywhere on factors of any length and
structure; and when talking about general idempotencies, we have
gone even farther away from anything that might be immediately
applicable in DNA computing or other fields.
Seeing what kind of research is called for by politics and the econ-

omy these days, and what kind is not, one might take this abstraction
as a deficiency and rather call for restrictions to the duplication op-
eration, which make it more realistic. A four letter alphabet like in
DNA and restriction of the cutting sites to the docking sites of certain
enzymes might go in this kind of direction.
However, we have intentionally chosen a somewhat contrary path.

For one thing, even such supposedly realistic restrictions would still
leave the model highly abstract, and the probability of creating a
model actually applicable would remain minuscule. The chances that
some day somebody will construct a biochemical device for computa-
tion using some of the results presented in this thesis would probably
not have increased much.
On the other hand, a set of restrictions like mentioned above above

would have deprived our concepts of their generality. With the defi-
nition of idempotency languages as it is stated here, the results ob-
tained may be of interest in any domain, where rewriting within se-
quences occurs in any of the ways described – be that insertion, du-
plication, deletion or any other. This generality can only be achieved
by holding the definition as slender and unspecialized as possible.
Even more importantly, we hope to have demonstrated that the

theory of languages generated by idempotencies contains a great
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number of problems interesting in themselves by the mere virtue
of their mathematical beauty. For example there is the fact that in
all three variants we have regular and non-regular versions; for uni-
formly bounded, bounded and unbounded idempotency languages.
In each variant the conditions for regularity are fundamentally dif-
ferent, which shows the richness of the structure of the language
classes generated. With a uniform bound, insertion generates non-
regular languages, while for bounded and general idempotencies it
is almost trivially regular; on the other hand uniformly bounded du-
plication is regular, while in the general case we do not even know if
it can be shown to be context-free.
The coincidence of this richness with the simplicity and elemen-

tarity of our definitions is what has made research on idempotency
languages so fascinating and satisfying, while at the same time a
great number of interesting problems remain open and call for fur-
ther work. We will now conclude this thesis by highlighting a selected
few of these on the following pages.
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Selected Problems Left Open

We conclude by listing some interesting but unresolved questions
from the fields treated in this thesis. Some of these have been stated
explicitly already in the preceding chapters, others not. The con-
cise compilation here will certainly be helpful for anyone in search
of some interesting questions to work on in the field of idempotency
languages.

• Our choice in how to apply the idempotency rules in generat-
ing languages is not the only way this can be done. We have
just followed the spirit of the original definition for duplication
by Dassow et al. [26]. For example, idempotency is in general
based on equality, which is symmetric. So one might look at the
effects of applying rules in both possible directions, i.e. increas-
ing and decreasing length. Over two letters, there would only be
seven duplication languages then, corresponding to the seven
square-free words. Over a one-letter alphabet there would be
exactly n uniformly n-bounded duplication languages. The The-
orem of Green and Rees even states that for alphabets of any
finite size there would be only a finite number of duplication
languages [35], and the non-counting classes in general con-
stitute cases of idempotency languages in the sense described
here. Without length restrictions several results have already
been established as mentioned in Section 2.2.2, but it seems
that for our type of length-restrictions no work in this direction
has been done.

• As described in the motivation for duplication, the DNA opera-
tion of duplication takes two strings  and creates . But
here also  is created at the same time; of course, in the phys-
ical world the additional letters of the second  cannot appear
out of nowhere. This second product was disregarded in the def-
inition of the duplication operation. We could as well investigate
a variant, where both form part of the language generated and
are processed further. In some sense this would be an opera-
tion preserving the total number of symbols involved, whereas
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our idempotency rules add and delete symbols in arbitrary num-
bers.

• The problem, which has attracted most attention in our con-
text is certainly the context-freeness of general duplication lan-
guages over three letters. However, no decisive advances have
been made up to this point. This is a property the problem
shares with another one, which has received even more atten-
tion: the context-freeness of the language of primitive word,
which was first mentioned by Dömösi, Horváth and Ito in 1991
[30] and which remains unresolved despite the fact that many
a good mathematician has spent many an hour on trying to
solve it. Stated in the terminology of Section 3.2 the question
is, whether

p
+ is context-free.

As shown in Section 3.1.1 for duplication, in both cases the
languages under question are very dense, which accounts for
the fact that they fulfill all known pumping properties. Unfor-
tunately, pumping properties are almost the only easy-to-apply
test for non-context-freeness. Thus it may very well be that
some fundamentally new results about context-free languages
are required before answers can be found.

• Also when investigating the confluence of the idempotency rela-
tions considered, the status of general duplication remains un-
clear. As shown in the proof of local confluence in Proposition
2.6.18, almost the diamond property holds — but already the
two steps in one of the converging derivations could in princi-
ple make a relation non-confluent. We still conjecture that for
duplication this is not the case.

There is also a bounded class of idempotency relations, whose
confluence remains an open problem. For relations ≤k./n

1
for

n ≥ 3 the proof technique of the case n = 2 from Proposition
2.5.4 does not apply, and therefore some other type of reason-
ing would need to be found.

• Example 3.2.16 provides a rather simple language of the form
+ such that its duplication root ♡p

+ is finite. The proof of
this is not immediate,  is quite long, and we need an alphabet
of four letters. It is an interesting problem to find a shorter
example, in the ideal case one, whose optimality can be proven.
And, of course, the question is, whether the size of the alphabet
can be reduced to three. We suspect that this is possible, while
for the size of two we know that all duplication roots are finite.
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As a matter of fact, not even an example of a word over three
letters with more than two duplication roots is known. While
such an example can rather certainly be found by computer
search, the more challenging task would be to bound the maxi-
mal number of roots as a function of the original word’s length
- bound it both from above and below. This would probably give
us more insight in the structures that can be produced by nested
duplications.

• Another problem left open in Section 3.2 is the decidability of
the finiteness of the duplication root of regular languages. While
it is often said that “all problems about regular languages are
decidable,” we strongly doubt that also this question is de-
cidable. The reason for this lies in the power of duplication.
We have seen that it can generate non-regular, possibly non-
context-free languages from a single word. Even more impor-
tantly, Proposition 3.2.9 shows that questions about the roots
of regular languages implicitly also deal with non-context-free
languages, because the root of ∗ is not context-free. There-
fore the common rule just mentioned might not apply in this
case, because implicitely non-regular languages are involved.
The same might even be true for the length-bounded case.

Of course, many other problems have been left open throughout this
thesis. But this list is by no means intended to be complete; it merely
picks out a few problems that seem especially interesting according
to the author’s very personal judgment. And this judgment tells him
to conclude the list at this point and thus conclude the entire thesis.
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