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Abstract
John Searle raised the question whether all computation is observer-relative. We sketch and
illustrate his arguments, which lack a clear definition of what exactly an observer is and what
it is able to do. In order to be able to explore the arguments in a more formal way, we propose
required properties for the observer, for example non-interference.

Then we argue that the observers employed in the paradigm of Computing by Observing formalize
these requirements quite adequately. Under this assumption we provide strong evidence for
multiple and even universal realizability in the realm of computation.

0 What is a Computation?

The starting point for our considerations is the following very fundamental question: What
is a Computation? For a long time, maybe most scientists’ would have replied in similar
ways when asked this, especially researchers working in Theoretical Computer Science. These
answers would have included a process (physical or abstract), and a function that this process
implements and which models some type of information processing. And implicitly, most would
probably have assumed some intention that was put into the design of this process in order to
implement just this function.

During the last decades, however, many people have come to consider computation in a much
wider sense. This is especially true for advocates of a strong version of natural computing,
who often see computations already in processes that occur in nature. As an example, take the
following quote from Laura Landweber and Lila Kari:

“ . . . ciliated protozoans of genus Oxytricha and Stylonychia
had solved a potentially harder problem using DNA
several million years earlier.” [12]

Later they add that “in principle, these unicellular organisms may have the capacity to perform
at least any computation carried out by an electronic computer.” We can assume that several
million years ago there was no being with anything that we would call an understanding of
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computation, at least not on planet Earth. So there was certainly no intention to compute
behind the design of the processes that these ciliates were executing then and which they still
execute today.

Today however, there are human beings with two abilities. On the one hand, they can compute
and think about computation in an abstract manner. On the other hand, they have the
phantasy to map very difficult computations onto the activities of this kind of simple unicellular
organisms. Now the question is: are we discovering computations that have been there all the
time? Or is computation maybe not an intrinsic property of a process at all? Then there would
be no objective way of judging what a computation is.

This set of questions was investigated by John Searle, the inventor of the famous Chinese
Room argument [17], in his influential book The Rediscovery of the Mind [18]. And his main
conclusion is that computation must be observer-relative; it is not an intrinsic property that
some process either has or has not. Moreover, one and the same process can be interpreted as
different computations by different observers. This is what he calls multiple realizability; the
extreme case that one process actually instantiates all possible computations is called universal
realizability. These are just adaptions of the general concept of multiple realizability [3] to the
realm of computability.

Hillary Putnam showed what follows if this point of view is taken to the extreme. Without
getting into technical details of his argumentation we cite his statement that “every ordinary
open system realizes every abstract finite automaton” [16]. What this implies was pointed out
by David Chalmers in his essay with the somewhat polemic title “Does a Rock Implement Every
Finite-State Automaton?” that quite efficiently sums up the contents of the article [9]. So is
just about anything doing every imaginable computation all the time? One central concept
used in this discourse that is used without a clear definition

Without getting deeper into this mainly philosophical debate, we try to explore the possible
role of an observer in a computation in a purely formal manner. For this we use the paradigm
called Computing by Observing. It already includes an explicit observer in its architecture.
Unlike the observer that one might think about when pondering about Searle’s argument, our
observer seems to be quite integrated into the system that is actually computing. Further,
it has some computational power itself although this power is quite limited. Thus one could
doubt that any conclusions for the philosophical debate can be drawn from results obtained for
Computing by Observing.

However, we argue that the features of our observers are reasonable for any entity that is
supposed to observe and understand a computation and its results. To his end we start with
an example for the observation of a computation. Then we introduce the computational model
of Computing by Observing in its technical details and construct an example that translates
the simple introductory example into this domain.
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1 Observing a Computation

We first try to get a feeling for the role that an observer might have in a computation. To this
end we take a look at an example of how a computation is done. As human beings we maybe
have the best intuition when we consider a human computer. So for the format in which the
computation is done we choose the same one that Alan Turing had in mind, when he developed
the famous Turing Machine: a human being doing a calculation with a pencil and a piece of
paper [19]. The observer is somebody who can only read the notes that are written on the piece
of paper. He does not know anything about the processes going on in the computer’s brain, for
example. Our choice for the calculation that is done is very basic: we consider addition in the
basic form that many of us were taught in school.

Before we start, let us reflect for a moment on what we expect from an observer in order to
classify him as such. One seemingly obvious assumption is that he does not interfere with
the observed process; otherwise it would form part of the system rather than observe it. This
assumption might be problematic when we get down to an atomic level. Much discussion
has revolved around this in Quantum Theory. On the other hand, it is reasonable to assume
that macromolecular processes can be observed without changing their course at this level.
Watching the computer in our example should not change the way in which he computes. So
we will assume there is no interference.

Secondly, the observer must be able to do what its very name promises: observe, that is, gather
information. So it should have a way of perceiving the state or activity of the computing
process. For example, the observer of a common digital computer should know what is in the
(relevant part of the) memory or what instructions are being executed. Note that this type of
information goes beyond the mere output of the system that typically is delivered to the user
in some format. We assume it safe to suppose that something more than a finite number of
input/output pairs are necessary to judge whether a given process is computing or not. Such
pairs could at best indicate with a certain probability that more than a random output is
produced.

After these preliminaries, let us now finally get to the computation. Suppose that a person is
observed while he is writing down the following sequence of symbols from left to right and top
to bottom:

X Y
+ Z

Z X

Assuming the role of the observer ourselves for a moment, we probably do not see immediately
that this is a computation, because the symbols used are not the numbers we normally use.
On the other hand, already the symbol + and the spacial arrangement of the symbols indicate
that we are dealing with an addition. Then the fact that X and Z appear twice leave only a
limited number of choices. There are some, however, that work out.

So the most probable consequence is that we will believe that we have observed the computer
doing an addition like 29 + 3 = 32 or 59 + 6 = 65 with the letters representing the respective
digits. These solutions work in the decimal system that we are used to. At the same time there
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are solutions with different digits, if we employ number systems of a lower base. For example,
an observer, who is more accustomed to numbers in base 8, would probably first arrive at one
of the interpretations 27 + 3 = 32 or 57 + 6 = 65, because these are closer to his experiences
and expectancies. The first point to note here is that different observers can interpret one and
the same process as different calculations.

Secondly we note that in order to interpret the writing as a computation, the observer must be
able to interpret not only the final result but the entire process. If someone simply spits out a
number, there is no way of telling whether it has been computed in some way, or whether it is
just produced randomly. So if the observer wants to judge, whether something is a computation
at all, he must answer the more specific question what is computed. Without the meaning,
computation and random symbol manipulations cannot be distinguished. We only consider the
example from above a computation, if we are able to find digits that substitute the letters in
a sensible way, i.e. if we manage to assign an interpretation to the steps of the process we
witness.

This makes a point similar to the one of the Chinese Room argument, which in Searle’s own
words showed that ‘. . . semantics is not intrinsic to syntax’ [18]. In our example different
semantics can be assigned to the syntax. We can conclude that there is not one specific
semantics that is intrinsic to the sequence of symbols, i.e. to the syntax. As a consequence,
meaning is given to such a process only by some agent from outside.

However, when Searle speaks about observer-relativeness, he locates this between the levels of
syntax and the physical implementation of this syntax. Thus our example does not yet bring
us closer to his conclusion that

“There is no way you could discover that something is intrinsically a digital com-
puter because the characterization of it as a digital computer is always relative to an
observer who assigns a syntactical interpretation to the purely physical features of
the system.”

Because in our example syntax and the physics beneath it basically coincide, it does not serve
to distinguish between these two levels. Nonetheless we want to exploit it a little bit more.

Of course, one might argue that the observer here is more than a mere observer. Even trans-
lating the string 32 into a number requires the computation 3 · 10 + 2 in the decimal system;
similarly 65 in base eight is translated into a number via 6 · 8 + 5 = 53. For the decimal system
we usually do not need to think about this kind of calculation, since we are so used to this
system as long as the numbers do not become very large. But even for a two digit octal number
most humans will need to compute seriously, which illustrates more clearly that even reading
and understanding a number requires some computation. It is worth noting that addition and
multiplication, which are necessary here, are not mere regular transductions, i.e. they cannot be
done by standard transducers. More than regular computational power is necessary to execute
them.

From our example we deduce the following: most people would say that the main part of the
computation was done by the agent writing down the symbols, not by the observer. So it makes
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sense to allow some simple calculations to be done by an observer, if we want to capture the
intuitive meaning of computation. Now the role of the observer is a crucial factor, when we
speak about observer-relativeness. What is an observer allowed to do? What does it mean to
observe? Observing the digit 5 lets us think of the corresponding number in a more direct way
than observing 5534; and for octal numbers the way from reading to understanding the number
is still less direct. Where do we draw the border between observation and computation?

We will now try to give some formal answers to these questions. Before we start, we should note
that our example is still a crude simplification of the situation for Observer Systems, which we
will now introduce. In all of the above interpretations, XY + Z = ZX is just one instantiation
of the function called addition. But an instance of a model of computation normally specifies
an entire function with its infinitely many possible inputs.

2 Computing by Observing

First off, let us again point out the following about the example from Section 1. In order
to recognize that something has been computed, we need to look at all the notes that have
been taken. Since they are relatively complete and we have some experience with this type of
computation, in this case we can reconstruct the rules that the computer followed.

If we do not understand the rules behind what is happening, it is hard to distinguish a com-
putation from just random symbol manipulations. One might even say that it is impossible
to decide if something has been computed without knowing what has been computed. It is
hard to imagine a way of answering the first question Without being able to answer the second
one. Thus we need to see the process in a rather complete way. Suppose the computer in the
introductory example had done a bigger part of the calculation only in his head. We could only
give meaning to the notes that we observe by doing the calculation again ourselves, filling in
the gaps. Only the systematic sequence of steps convinces us.

A somewhat similar situation is the standard setup of an experiment in the natural sciences.
Take, for example, the relation between the population sizes of hunter and prey. From observing
the population numbers over a long period of time, one can infer the rules that this dynamic
equilibrium follows. This role of an observer that logs certain values produced by a process is
essential to most experiments. Without this extraction of data there would be no extraction of
knowledge.

With this we come to the field of Natural Computing. Its goal is the use of mechanisms
present in nature for computing. Biochemical reactions changing DNA strands are an example
for a candidate mechanism for building a whole new kind of computer. As we have seen
in the quote from Landweber and Kari, sometimes it is even claimed that there is already
some computation present in nature that we only need to discover. Advocates of a narrower
interpretation of Natural Computing would attribute computations probably only to processes
that use mechanisms and materials present in nature, but do so out of their original context
and in ways designed by humans.
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configuration 1 configuration 2 configuration 3 configuration 4

observer

output: [observation 1] · [observation 2] · [observation 3] · [observation 4]· · ·

input

Figure 1: Schematic representation of a transducing observer system.

Normally, the new models for computation that are based on biochemical phenomena present
in nature follow the standard paradigm of Computer Science: an input is transformed into an
output by some kind of process(or) that follows a certain programme or a set of rules. The
output constitutes the result. This is the common approach from Adleman’s seminal experiment
[1] to the many theoretical models that have been designed since then [15, 10].

So there is a big difference between the ways in which computer scientists and researchers from
experimental sciences ”use” biochemical systems or abstractions thereof. Computer Science
employs biochemical reactions, but does so in a different way from those scientists that have
dealt with these phenomena for a much longer time. In the light of this, Matteo Cavaliere
and the present author asked themselves, how one could formalize the role of the observer in
an experiment that is so important, when scientists want to gain information about processes
in nature. Or in other words: how could one compute with biochemical systems using the
methods that are used by those people who have dealt with these kinds of systems for a much
longer time than the ones who are aspiring to build biocomputers or to discover computation
in nature?

The result was the paradigm called Computing by Observing that is inspired by the setup of
experiments in the natural sciences. Figure 1 depicts the role of a separate observer in this
architecture. As in most models of computation –be they standard ones or bio-inspired ones–
there is a system that evolves from one configuration to another in discrete steps. This system
starts working on the input. However, the output is not produced directly by this system.
Rather, each configuration of the system is read by an observer that maps it to a letter. The
concatenation of all these letters until the underlying system stops is then the result of the
computation. Just like a sequence of (pairs of) numbers is the result of observing hunter and
prey populations.

Thus the computation of the underlying system can work on data in any kind of format as long
as the observer can read this format. For example, in the initial work on the topic Membrane
Systems formed the underlying systems [6]. Their configurations are represented by multisets.
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Just as well, there could be a Turing Machine in the role of the underlying system. Then the
observer would look at its state and its tape after every step that the machine takes.

In some sense the result that is produced by the observer is an abstraction of the entire com-
putation. We assign one (or none) of finitely many letters to each one of the infinitely possible
configurations of the underlying system. Thus we put them into one of finitely many equiv-
alence classes. The final result is then isomorphic to a sequence of classes of configurations
rather than to the sequence of configurations. Thus we lose some information, which in the
best case is like losing the intermediate notes of a calculation and retaining only the final result.

Another important point is that we usually give the observer the possibility to stop a compu-
tation. That is, after reading a configuration it cannot only produce an output letter, but also
a special output ⊥ that immediately invalidates the entire result. In this way, the observer can
separate good or meaningful computations from bad ones.

The first central question addressed in work on Computing by Observing has been the follow-
ing: Is it possible to go beyond the computational power of the components by combining them
in this way? Only then the additional effort would be justified. For example, if we already
had Turing Machines as underlying systems, adding the observer could obviously not lead to
an increase in computational power. The further the underlying system is from being compu-
tationally complete, the bigger the increase can be. So the question was if the architecture can
lead to a gain in computational power and how big this gain can be?

Many different bio-inspired models and also plain string-rewriting systems were used to explore
possible increases in power. Without entering into detail on this topic, the most common
pattern was the following one: regular observers with underlying systems of context-free power
sufficed to attain computational completeness, for example in the cases of grammars and string-
rewriting systems [7, 8]. There were two exceptions to this. For sticker systems [2] and insertion
systems [11] already models of regular power were sufficient to compute everything that is
Turing-computable. And, of course, sometimes there is no increase in power.

These differences raised another question: can we identify key features in the underlying systems
that are crucial for a big increase in computational power? There seem to be two very important
features. The first one is the ability to expand without limit the space that is used. Just like any
class of Turing Machines with a space bound cannot be computationally complete, an observer
system needs the ability to use an unlimited amount of space. For example, If this space is fixed
or linearly bounded for a string-rewriting system, then this system and any regular observer
can easily be simulated by a linear bounded automaton.

The second feature that is always present in the underlying system, when we observe a big
increase in computational power is unlimited re-usability of the working space. For instance, for
a string-rewriting system this means that the contents of a position can change arbitrarily often.
In such a system, the only processing is the rewriting done by the rules. So information that is
not rewritten any more cannot have any influence on the further evolution of the computation.

Because there are only finitely many letters, frequent rewriting will, of course, eventually lead
to a repetition of letters in that position. But the relevant information is not only in the symbol
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itself, but also in the sequence it runs through. So unlimited access to the information that
has been produced is essential. Further, as pointed out by Morse [14] with only three symbols
one can obtain a sequence of symbols that is not repetitive in the sense that no subsequence is
directly followed by itself again.

Looking again at a linear bounded automaton, if we put a constant bound on the number of
times that it can rewrite its cells, this further limits its computational power [20]. So the key
features for attaining computational completeness via Computing by Observing can also be
recognized in classical models like the Turing Machine.

3 Accepting Observer Systems

Before defining the details of accepting observer systems, we want to point out a weakness of
the introductory example: The ambiguity works only for specific combinations of digits. By
looking at several different additions we could eventually see that there is only one number
system where all of them work. Already the number of distinct digits that appear would tell
us with high probability, in which base the calculation is done. Further, there are just some
additions where this ambiguity arises. But in Theoretical Computer Science a function consists
of infinitely many input/output pairs. So after a few examples for additions, one would see
which function is actually computed.

For making our point, the example was good enough. But now we want to say that a system
computes different functions depending on how it is observed. This means that these distinct
observers must map every input to the corresponding output of the function that is computed.
We give an example for such a case. To this end we need to enter into a little more detail about
the definition of the instantiation of the Computing by Observing architecture that we will use.
So we introduce the formal definitions for the concepts that we have presented in an informal
manner in the preceding section. Then we can proceed to explore specific examples. As the
observed systems we use string-rewriting systems; for details on these the reader is referred to
the monograph by Book and Otto [4].

3.1. The Observer

Central to all of our discussion is the observer. In our context this will always be a monadic
transducer. These are deterministic finite automata with the following change: there are no
final states; instead there is an output function that maps every state to an output letter.

Definition 1 A monadic transducer is a tuple [Q, Σ, Γ, δ, q0,φ] where Q, Σ, δ, and q0 are the
same as for deterministic finite automata. Γ is the output alphabet, and φ is the output function,
a mapping Q 7→ Γ ∪ {λ} which assigns an output letter or the empty word to each state.
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The mode of operation is that the monadic transducer reads the input word, and then the
image under φ of the state it stops in is the output. We introduce a few notations that will
be convenient in describing the interactions between monadic transducers and string-rewriting
systems. For a set of string-rewriting rules R , we will use the notation R(w) to denote all
sequences of words (w1,w2, ... ,wk) that form terminating derivations w1 ⇒R w2 ⇒R · · · ⇒R

wk of R . For such a sequence σ and a monadic transducer O we will denote by O(σ) the
result of concatenating all the images of the words in the sequence, that is O(σ) = O(w1) ·
O(w2) · · · O(wk).

So monadic transducers do not see what actually happens in the derivation steps of the un-
derlying system. They only read the resulting strings that in general do not reveal from which
other string they have resulted by the application of which rule. This is much like the observer
in the example from Section 1 that can see what is written, but does not know anything about
why (by which rule) the writing is done. However, monadic transducers with their regular
power cannot do the calculations that were necessary there to understand the computation.
Thus what they can do does not seem to exceed an intuitive idea of an observer.

3.2. Computing with the Observer

Now we define how exactly the observation of the string-rewriting system leads to a result of
the computation.

Definition 2 An accepting observer system is a quadruple Ω = [∆,R ,O,D], where O is a
monadic transducer, R is a string-rewriting system over the input alphabet Σ of O, the system’s
input alphabet ∆ is a subset of Σ, and D is a regular language over the output alphabet of O.

The language accepted by such a system is the set of all words w ∈ ∆∗ such that there exists
a terminating derivation sequence s ∈ R(w), whose observation is accepted by the decider, i.e.
D(O(s)) = accept if D is given in the form of a finite automaton; formally

L(Ω) := {w : ∃s[s ∈ R(w) ∧ D(O(s)) = accept]}.

Note that O(s) is what is called output in Figure 1 that depicts the general architecture, which
can also be used to do transductions or to generate languages. Here the observer can discard
computations by outputting a symbol ⊥ that does not appear in the language D. For more
details and results on the computational power of accepting observer systems the reader may
consult the article of the present author with Matteo Cavaliere, where these systems were
introduced [8].

To illustrate the operation of an accepting observer system we now look at an example. Here
the underlying system is the string-rewriting system with the four rules a→ A, A→ b, b → B ,
and B → C . The input words consist only of the letters a and b. Configurations of such a
system are simply strings. First we construct an observer, with which this system can recognize
words of the form anbn.
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The interesting computations in this case mark the left-most a by rewriting it to A; then they
do the same to the left-most b by rewriting it to B . If both types of markings can be done
the same number of times, obviously the original number of a and b was the same. The role
of the observer consists mainly in filtering out and discarding those computations, where the
string-rewriting rules are not applied in exactly the manner just described. This is why all the
rewritings are done in two steps, for example b → B → C instead of directly rewriting b → C .
In this way, every rewriting leaves a kind of trace (in this case the letter B) in a configuration
and can thus be detected by the observer.

In detail, the observer realizes the following mapping:

O(w) =



I if w ∈ a+b+

1 if w ∈ b∗Aa∗c∗b∗

2 if w ∈ b∗Aa∗c∗Bb∗

3 if w ∈ b∗a∗c∗Bb∗

4 if w ∈ b∗a∗c∗b∗

⊕ if w ∈ b∗c+

λ if w ∈ b∗Bc+

⊥ else

Here we use regular expressions to specify the languages and λ denotes the empty word. The
words that are mapped to I are input words that have the correct order of symbols, i.e. only
a followed by only b. The words mapped to numbers 1 to 4 correspond to the four phases of
marking and rewriting one a and one b as described above. If we arrive at a string mapped to
⊕, the numbers of a and b were the same. Then it remains to rewrite all b to c , because the
system has to stop in order to accept. Since there is no rule that rewrites c , a string of only c
brings the system to a halt.

So the observations that lead to acceptance of the input string have the form I (1234)∗⊕+ and
thus form a regular language. The language accepted by the system is {anbn : n > 0}. It is
important that the clauses of the observer mapping are disjoint; otherwise the corresponding
monadic transducer could not be deterministic. Further, the capital letters play a key role. In
accepting computations there are never more than two of them in the string at any given time.
Further, the sequence

· · · ⇒ · · ·A · · · ⇒ · · ·A · · ·B · · · ⇒ · · ·B · · · ⇒ · · ·

is the only one in which they can appear and disappear producing the sequences 1234 in the
output. In this way the observation indirectly contains information about the sequence of rules
that has been applied.

Now we want to use the same string-rewriting system with a different observer to accept the
following language: all the strings ap where p is a prime. We use the facts that multiplication
is repeated addition and that addition is just concatenation for unary numbers. Thus for every
number k the string ak can be factored into ai · ai · · · ai for every divisor of k . Therefore k is a
prime if and only if such a factorization with 1 < i < k can be found.
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The string-rewriting system realizes the following algorithm: guess a divisor d of the length of
the input word. Rewrite the first d letters a to A and then to b. Now rewrite the left-most a
to A, the left-most b to B and so on until all b are gone. Then all A are rewritten to b and all
B to c . In this way we again arrive at a suffix of d letters b followed only by a. Iterating this,
we rewrite the entire word to c with a final suffix of b only if the length is a multiple of d .

In this case the observer mapping is as follows:

O2(w) =



I if w ∈ A∗a+ ∪ b∗A+a+

S if w ∈ bb+a+

1 if w ∈ c∗b∗Bc∗a∗

2 if w ∈ c∗b∗Bc∗Aa∗

3 if w ∈ c∗b∗c∗Aa∗

4 if w ∈ c∗b+c+b∗a∗

F if w ∈ c+b+a+

⊕ if w ∈ c+b+

λ if w ∈ c+Bb+

⊥ else

While the divisor is guessed, strings are mapped to I . When a string of class S is reached,
the check for divisibility starts. The part bb+ guarantees that we have not guessed the trivial
divisor one, the presence of more a guarantees that we have not guessed the number itself. The
rewriting of the letters b is started at the right end of the block. Otherwise the border between
the two blocks would not remain clear after the first a is rewritten to b. We run through the
phases 1 to 4 until the last iteration where the final configuration is mapped to F . If there are
no more a left, which means we have found a divisor, the resulting observation is ⊕. Then we
only need to replace the remaining b by c so the systems stops, just like in the example above.

So a word is accepted if the observation belongs to the language

I+S [(1234)+(123F )]∗[(1234)+(123⊕)]⊕∗ .

If the input is not of prime length, then at some point there cannot be a 2 after a 1. So only
the desired words are accepted.

What we have seen is that we can accept very different languages with the same string-rewriting
system and different observers. So we have generalized the example from Section 1 from the
calculation of one specific addition to the general notion of function as it is used in computability
theory.

It is worth noting that the string-rewriting system we have used is extremely simple. Its rules
only replace one single letter by another. The context cannot play any role, and the length of
the string remains constant, when such a rule is applied. This type of string-rewriting systems
is called a painter system. Taken by itself, such a system cannot compute much. To be more
precise, a language is accepted by a painter system, iff it can be represented as A∗BA∗ where
A and B are arbitrary subsets of the alphabet. In the Computing by Observing architecture,
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however, all context-sensitive languages can be computed with these systems [8]. It is also
clear that nothing more can be computed, because the working space is fixed and cannot be
expanded.

After these two examples, it is clear that the string-rewriting system used above could also
be used to accept many other languages. Straight-forward examples are {anbnan : n > 0}
or the language of all words that contain the same number of a and b. Languages like {ak :
k is a multiple of `} for any ` are just special cases of the language of prime length that we have
treated above. In general, there is no limit to the number of languages that can be accepted
with the same underlying system. So we definitely have an example of multiple realizability
here. But we can do even better than that,

The strongest result that generalizes our example is Theorem 3 in the work of Cavaliere, Frisco,
and Hoogebom [5]. They construct a single rewriting system S that is universal in the following
sense: for every Turing-computable language L there exists an observer, such that L is com-
puted by S in combination with the specific observer. They show this for the instantiation of
Computing by Observing that generates languages. But it is straightforward to adapt this for
accepting observer systems.

Theorem 3 There exists a context-free string-rewriting system R such that for every recur-
sively enumerable language L there exists a monadic transducer OL such that the accepting
observer system composed of R and OL accepts L.

A context-free string-rewriting system is one whose rules have left sides of length only one. It
is worth noting that the rewriting system used here is even simpler than that. Besides painter
rules as we have used them in the examples above, only one additional rule of the form a→ ab
is necessary. Here the letter a is preserved, which in many cases is a severe restriction for such
a rewriting system. Thus without the observer the system would have less than context-free
power and it is really the combination of the two components that yields the computational
completeness here.

Theorem 3 tells us that one and the same process can be used for doing the main part of any com-
putation that is possible at all in the sense of Turing. In other words: more observer-relativeness
is not possible in this context, and we have found an example for universal realizability.

The forms of the rules a → b and a → bc are two very simple patterns that –with a little
phantasy– can be found in almost any place in nature. For instance, we can take biochemical
reactions. a → bc could be the splitting up of a larger molecule, a → b could be a change in
the folding of a protein. Looking only at the molecules and disregarding matters like energy
that is set free or bound, this would be quite direct implementation of the rules. If we monitor
just one organic molecule in a solution of many molecules, the rule a → ab mentioned above
could simply be the appending of another molecule at a certain point, for example the addition
of one more base to a DNA strand.

Of course, we have to abstract away from many details to see certain phenomena as instantia-
tions of our rules. However, the same kind of abstraction is necessary when we look at human
or electronic computers and interpret their syntactical manipulations as computations. Thus
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Theorem 3 gives strong support to Searle’s claim that just about anything can be viewed as a
digital computer.

4 Further Questions

The reader who basically accepts our arguments up to this point might now be troubled when
he thinks about the digital computer he is probably using. These devices are widely accepted
as machinery that computes. However, normally the interaction with the user is only via
input/output. Humans do not monitor what is going on inside the memory and the processor.
And even though this would still be technically possible, barely anyone would be able to check
whether something, let alone what exactly is being computed. Other observers are not in sight
either? So are we mistaken when we assume that computers compute?

We can resolve this seeming contradiction if we allow some of the observation to be replaced
by trust. Let us imagine a user that tries to decide whether a digital computer about which he
has no knowledge computes some function or not. He has no idea about the operating system
and the programs that are running and just receives output corresponding to his inputs. It is
safe to assume that he cannot say much about the device’s activity. But normally we are in a
different situation.

There are instruction manuals for the programs we use. There messages on the screen that
explain what the output is, and thus implicitly what has been computed. Only if we trust in
the correctness of their claims the results become useful to us. in other words, we are convinced
that there could in principle be an observer that interprets the process that has run as just the
computation that is claimed to have been executed. Of course, this trust might no be justified.
Indeed, often enough computer programs compute things different from the ones they claim to
compute. But without this trust it would be hard to recognize and use computations that are
as complex as the ones executed by our digital computers.

A second question that arises is of a more technical manner. Let us accept that there is no
computation without an observer, and that monadic transducers adequately formalize such an
observer that does not form part of the computation. Then Theorem 3 basically tells us that
a context-free mechanism is sufficient to compute all the computable functions. Why then do
we use much more complex mechanisms like Turing Machines to characterize computations?
And where does the observer disappear on the way to a Turing Machine? Of course, we could
assume Turing Machines to implicitly be underlying systems in our architecture. With them,
computational completeness would be easy to attain. And on the other hand, they could
simulate a monadic transducer observing their own computation.
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